Skip to main content
Log in

Biochemical and in silico Characterization of Recombinant L-Lactate Dehydrogenase of Theileria annulata

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Theileria annulata is a parasite that causes theileriosis in cattle. Reports about drug resistance made essential to develop new drug. LDH of Theileria schizonts is the vital enzyme for its anaerobic metabolism. TaLDH gene was first cloned into pGEM-T cloning vector with two introns in our previous study. Here we report cloning of TaLDH without introns into pLATE 31 vector in E. coli BL21(DE3). Protein was in an inactive form. Two mutations were fixed to express the active protein. Protein was purified by affinity chromatography and evaluated by SDS-PAGE and size exclusion chromatography. Optimum pH of enzyme was performed in pH 7.5, and enzyme was stabilized at 20–40 °C. Enzyme kinetics of recombinant TaLDH were found to be in the direction of pyruvate to lactate K m 0.1324 and K i 4.295 mM, k cat , 44.55/s and k cat /K m , 3.3693 × 105/M/s. 3D structure of TaLDH was predicted, and possible drug binding sites were determined by homology modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sharifiyazdi, H., Namazi, F., Oryan, A., Shahriari, R., & Razavi, M. (2012). Point mutations in the Theileria annulata cytochrome b gene is associated with buparvaquone treatment failure. Veterinary Parasitology, 187, 431–435.

    Article  CAS  Google Scholar 

  2. Bishop, R., Musoke, A., Morzaria, S., Gardner, M., & Nene, V. (2004). Theileria: intracellular protozoan parasites of wild and domestic ruminants transmitted by ixodid ticks. Parasitology, 129, S271–S283.

    Article  Google Scholar 

  3. Witschi, M., Xia, D., Sanderson, S., Baumgartner, M., Wastling, J., & Dobbelaere, D. (2013). Proteomic analysis of the Theileria annulata schizont. International Journal for Parasitology, 43, 173–180.

    Article  CAS  Google Scholar 

  4. Alsaad, K. M., Suleiman, E. G., & Al-Obaidi, Q. T. (2013). Theileriosis in newborn calves In Mosul, Iraq. Basrah Journal Veterinary Research, 12, 265–274.

    Google Scholar 

  5. McHardy, N., & Morgan, D. (1985). Treatment of Theileria annulata infection in calves with parvaquone. Research in Veterinary Science, 39, 1–4.

    CAS  Google Scholar 

  6. McHardy, N., Wekesa, L., Hudson, A., & Randall, A. (1985). Antitheilerial activity of BW720C (buparvaquone): a comparison with parvaquone. Research in Veterinary Science, 39, 29–33.

    CAS  Google Scholar 

  7. Mhadhbi, M., Naouach, A., Boumiza, A., Chaabani, M. F., BenAbderazzak, S., & Darghouth, M. A. (2010). In vivo evidence for the resistance of Theileria annulata to buparvaquone. Veterinary Parasitology, 169, 241–247.

    Article  CAS  Google Scholar 

  8. Marsolier, J., Perichon, M., DeBarry, J., Villoutreix, B., Chluba, J., Lopez, T., et al. (2015). Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation. Nature, 520, 378–382.

    Article  CAS  Google Scholar 

  9. Kiama, T., Kiaira, J., Konji, V., & Musoke, A. (1999). Enzymes of glucose and glycerol catabolism in in vitro-propagated Theileria parva schizonts. The Veterinary Journal, 158, 221–227.

    Article  CAS  Google Scholar 

  10. Holbrook, J., Liljas, A., Steindel, S. J., & Rossmann, M. (1975). Lactate dehydrogenase. The Enzymes, 11, 191–192.

    Article  CAS  Google Scholar 

  11. Royer, R. E., Deck, L. M., Campos, N. M., Hunsaker, L. A., & Vander Jagt, D. L. (1986). Biologically active derivatives of gossypol: Synthesis and antimalarial activities of peri-acylated gossylic nitriles. Journal of Medicinal Chemistry, 29, 1799–1801.

    Article  CAS  Google Scholar 

  12. Erdemir, A., Aktas, M., Dumanli, N., & Turgut-Balik, D. (2012). Isolation, cloning and sequence analysis of the lactate dehydrogenase gene from Theileria annulata may lead to design of new antitheilerial drugs. Veterinarni Medicina, 57, 559–567.

    CAS  Google Scholar 

  13. Sambrook, J., & Russell David, W. (1989). Molecular cloning: a laboratory manual I–II–III (3rd ed.). New York: CSHL Press.

    Google Scholar 

  14. Turgut-Balik, D., Shoemark, D. K., Moreton, K. M., Sessions, R. B., & Holbrook, J. J. (2001). Over-production of lactate dehydrogenase from Plasmodium falciparum opens a route to new antimalarials. Biotechnology Letters, 23, 917–921.

    Article  CAS  Google Scholar 

  15. Yakarsonmez, S., Mutlu, C. E. O., Nural, B., Sarıyer, E., Topuzogullari, M., Milward, M. R., et al. (2016). Cloning, expression and characterization of the gene encoding the enolase from Fusobacterium nucleatum. Applied Biochemistry and Microbiology, 52, 1–9.

    Article  Google Scholar 

  16. Cameron, A., Read, J., Tranter, R., Winter, V. J., Sessions, R. B., Brady, R. L., et al. (2004). Identification and activity of a series of azole-based compounds with lactate dehydrogenase-directed anti-malarial activity. Journal of Biological Chemistry, 279, 31429–31439.

    Article  CAS  Google Scholar 

  17. Jones, D. T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 292, 195–202.

    Article  CAS  Google Scholar 

  18. Eswar, N., Webb, B., Marti‐Renom, M. A., Madhusudhan, M., Eramian, D., Shen, M. Y., Pieper, U. and Sali, A. (2006) Comparative protein structure modeling using modeller current protocol bioinformatics, Wiley, Inc., New York

  19. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.

    Article  CAS  Google Scholar 

  20. Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: patterns of nonbonded atomic interactions. Protein Science, 2, 1511.

    Article  CAS  Google Scholar 

  21. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410.

    Article  Google Scholar 

  22. Lovell, S. C., Davis, I. W., Arendall, W. B., de Bakker, P. I., Word, J. M., Prisant, M. G., et al. (2003). Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins Structure Function and Bioinformatics, 50, 437–450.

    Article  CAS  Google Scholar 

  23. Volkamer, A., Kuhn, D., Grombacher, T., Rippmann, F., & Rarey, M. (2012). Combining global and local measures for structure-based druggability predictions. Journal of Chemical Information and Modeling, 52, 360–372.

    Article  CAS  Google Scholar 

  24. Kawabata, T. (2010). Detection of multiscale pockets on protein surfaces using mathematical morphology. Proteins Structure Function and Bioinformatics, 78, 1195–1211.

    Article  CAS  Google Scholar 

  25. Anderson, A. C. (2003). The process of structure-based drug design. Chemistry and Biology, 10, 787–797.

    Article  CAS  Google Scholar 

  26. Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., et al. (2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 419, 498–511.

    Article  CAS  Google Scholar 

  27. Al-Anouti, F., Tomavo, S., Parmley, S., & Ananvoranich, S. (2004). The expression of lactate dehydrogenase is important for the cell cycle of Toxoplasma gondii. Journal of Biological Chemistry, 279, 52300–52311.

    Article  CAS  Google Scholar 

  28. Chaikuad, A., Fairweather, V., Conners, R., Joseph-Horne, T., Turgut-Balik, D., & Brady, R. L. (2005). Structure of lactate dehydrogenase from Plasmodium vivax: complexes with NADH and APADH. Biochemistry, 44, 16221–16228.

    Article  CAS  Google Scholar 

  29. Dunn, C. R., Banfield, M. J., Barker, J. J., Higham, C. W., Moreton, K. M., Turgut-Balik, D., et al. (1996). The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design. Nature Structural and Molecular Biology, 3, 912–915.

    Article  CAS  Google Scholar 

  30. Turgut-Balik, D., Sadak, D., & Celik, V. (2006). Analysis of active site loop amino acids of lactate dehydrogenase from Plasmodium vivax by site-directed mutagenesis studies. Drug Development Research, 67, 175–180.

    Article  CAS  Google Scholar 

  31. Kavanagh, K. L., Elling, R. A., & Wilson, D. K. (2004). Structure of Toxoplasma gondii LDH1: active-site differences from human lactate dehydrogenases and the structural basis for efficient APAD + use. Biochemistry, 43, 879–889.

    Article  CAS  Google Scholar 

  32. Ohlsson, I., Nordström, B., & Brändén, C.-I. (1974). Structural and functional similarities within the coenzyme binding domains of dehydrogenases. Journal of Molecular Biology, 89, 339–354.

    Article  CAS  Google Scholar 

  33. Bellamacina, C. (1996). The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. The FASEB Journal, 10, 1257–1269.

    CAS  Google Scholar 

  34. Lesk, A. M. (1995). NAD-binding domains of dehydrogenases. Current Opinion in Structural Biology, 5, 775–783.

    Article  CAS  Google Scholar 

  35. Lee, B. I., Chang, C., Cho, S.-J., Eom, S. H., Kim, K. K., Yu, Y. G., & Suh, S. W. (2001). Crystal structure of the MJ0490 gene product of the hyperthermophilic archaebacterium Methanococcus jannaschii, a novel member of the lactate/malate family of dehydrogenases. Journal of Molecular Biology, 307, 1351–1362.

    Article  CAS  Google Scholar 

  36. Brown, W. M., Yowell, C. A., Hoard, A., Vander Jagt, T. A., Hunsaker, L. A., Deck, L. M., et al. (2004). Comparative structural analysis and kinetic properties of lactate dehydrogenases from the four species of human malarial parasites. Biochemistry, 43, 6219–6229.

    Article  CAS  Google Scholar 

  37. Todorova, T., Pesheva, M., Stamenova, R., Dimitrov, M., & Venkov, P. (2012). Mutagenic effect of freezing on nuclear DNA of Saccharomyces cerevisiae. Yeast, 29, 191–199.

    Article  CAS  Google Scholar 

  38. Hewitt, C., Eszes, C., Sessions, R., Moreton, K., Dafforn, T., Takei, J., et al. (1999). A general method for relieving substrate inhibition in lactate dehydrogenases. Protein Engineering, 12, 491–496.

    Article  CAS  Google Scholar 

  39. Eszes, C. M., Sessions, R. B., Clarke, A. R., Moreton, K. M., & Holbrook, J. J. (1996). Removal of substrate inhibition in a lactate dehydrogenase from human muscle by a single residue change. FEBS Letters, 399, 193–197.

    Article  CAS  Google Scholar 

  40. Hewitt, C. O., Sessions, R. B., Dafforn, T. R., & Holbrook, J. J. (1997). Protein engineering tests of a homology model of Plasmodium falciparum lactate dehydrogenase. Protein Engineering, 10, 39–44.

    Article  CAS  Google Scholar 

  41. Dando, C., Schroeder, E. R., Hunsaker, L. A., Deck, L. M., Royer, R. E., Zhou, X., et al. (2001). The kinetic properties and sensitivities to inhibitors of lactate dehydrogenases (LDH1 and LDH2) from Toxoplasma gondii: comparisons with pLDH from Plasmodium falciparum. Molecular and Biochemical Parasitology, 118, 23–32.

    Article  CAS  Google Scholar 

  42. Hillisch, A., Pineda, L. F., & Hilgenfeld, R. (2004). Utility of homology models in the drug discovery process. Drug Discovery Today, 9, 659–669.

    Article  CAS  Google Scholar 

  43. Cavasotto, C. N., & Phatak, S. S. (2009). Homology modeling in drug discovery: Current trends and applications. Drug Discovery Today, 14, 676–683.

    Article  CAS  Google Scholar 

  44. Boucher, J. I., Jacobowitz, J. R., Beckett, B. C., Classen, S., & Theobald, D. L. (2014). An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases. Elife, 3, e02304.

    Article  Google Scholar 

  45. Sessions, R. B., Dewar, V., Clarke, A. R., & Holbrook, J. J. (1997). A model of Plasmodium falciparum lactate dehydrogenase and its implications for the design of improved antimalarials and the enhanced detection of parasitaemia. Protein Engineering, 10, 301–306.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilek Turgut-Balik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nural, B., Erdemir, A., Mutlu, O. et al. Biochemical and in silico Characterization of Recombinant L-Lactate Dehydrogenase of Theileria annulata . Mol Biotechnol 58, 256–267 (2016). https://doi.org/10.1007/s12033-016-9924-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9924-3

Keywords

Navigation