Skip to main content

Advertisement

Log in

Transient Expression of Functional Glucocerebrosidase for Treatment of Gaucher’s Disease in the Goat Mammary Gland

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Gaucher disease (GD) is an orphan disease characterized by the lack or incapacity of glucocerebrosidase (hGCase) to properly process glucosylceramide, resulting in its accumulation in vital structures of the human body. Enzyme replacement therapy supplies hGCase to GD patients with a high-cost recombinant enzyme produced in vitro in mammalian or plant cell culture. In this study, we produced hGCase through the direct injection of recombinant adenovirus in the mammary gland of a non-transgenic goat. The enzyme was secreted in the milk during six days at a level up to 111.1 ± 8.1 mg/L, as identified by mass spectrometry, showing high in vitro activity. The milk-produced hGCase presented a mass correspondent to the intermediary high-mannose glycosylated protein, which could facilitate its delivery to macrophages through the macrophage mannose receptor. Further studies are underway to determine the in vivo delivery capacity of milk-hGCase, but results from this study paves the way toward the generation of transgenic goats constitutively expressing hGCase in the milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beutler, E., & Grabowski, G. A. (2001). Gaucher disease. In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic and molecular bases of inherited disease (Vol. 3, pp. 3635–3668). New York: McGraw–Hill.

    Google Scholar 

  2. Orvisky, E., Park, J. K., LaMarca, M. E., Ginns, E. I., Martin, B. M., Tayebi, N., & Sidransky, E. (2002). Glucosylsphingosine accumulation in tissues from patients with Gaucher disease: Correlation with phenotype and genotype. Molecular Genetics and Metabolism, 76, 262–270.

    Article  CAS  Google Scholar 

  3. Rosenbloom, B. E., & Weinreb, N. J. (2013). Gaucher Disease: A Comprehensive Review. Critical Reviews in Oncogenesis, 18, 163–175.

    Article  Google Scholar 

  4. Mignot, C., Gelot, A., & De Villemeur, T. B. (2013). Gaucher disease. Handbook of clinical Neurology, 113, 1709–1715.

    Article  Google Scholar 

  5. Futerman, A. H., Sussman, J. L., Horowitz, M., Silman, I., & Zimran, A. (2004). New directions in the treatment of Gaucher disease. Trends in Pharmacological Sciences, 25, 147–151.

    Article  CAS  Google Scholar 

  6. Crystal, R. G. (2014). Adenovirus: The first effective in vivo gene delivery vector. Human Gene Therapy, 25, 3–11.

    Article  CAS  Google Scholar 

  7. Journal of Gene Medicine (2015). Gene Therapy Clinical Trials Worldwide. www.wiley.com//legacy/wileychi/genmed/clinical/ (Accessed October 2015).

  8. Yang, Y., Nunes, F. A., Berencsi, K., Furth, E. E., Gönczöl, E., & Wilson, J. M. (1994). Cellular immunity to viral antigens limits E1–deleted adenoviruses for gene therapy. Proceedings of the National Academy of Sciences USA, 91, 4407–4411.

    Article  CAS  Google Scholar 

  9. Luo, J., Deng, Z. L., Luo, X., Tang, N., Song, W. X., Chen, J., et al. (2007). A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nature Protocols, 2, 1236–1247.

    Article  CAS  Google Scholar 

  10. Yang, J., Tsukamoto, T., Popnikolov, N., Guzman, R. C., Chen, X., Yang, J. H., & Nandi, S. (1995). Adenoviral–mediated gene transfer into primary human and mouse mammary epithelial cells in vitro and in vivo. Cancer Letters, 98, 9–17.

    Article  CAS  Google Scholar 

  11. Sanchez, O., Toledo, J. R., Rodríguez, M. P., & Castro, F. O. (2004). Adenoviral vector mediates high expression levels of human growth hormone in the milk of mice and goats. Journal of Biotechnology, 114, 89–97.

    Article  CAS  Google Scholar 

  12. Han, Z., Wu, S., Li, Q., Li, J., Gao, D., Li, K., et al. (2009). Efficient human growth hormone gene expression in the milk of non–transgenic goats. Folia Biologica (Praha), 55, 17–22.

    CAS  Google Scholar 

  13. Han, Z. S., Li, Q. W., Zhang, Z. Y., Xiao, B., Gao, D. W., Wu, S. Y., et al. (2007). High-level expression of human lactoferrin in the milk of goats by using replication–defective adenoviral vectors. Protein Expression and Purification, 53, 225–231.

    Article  CAS  Google Scholar 

  14. Toledo, J. R., Sánchez, O., Montesino Seguí, R., Fernández García, Y., Rodríguez, M. P., & Cremata, J. A. (2005). Differential in vitro and in vivo glycosylation of human erythropoietin expressed in adenovirally transduced mouse mammary epithelial cells. Biochimica et Biophysica Acta, 1726, 48–56.

    Article  CAS  Google Scholar 

  15. Toledo, J. R., Sánchez, O., Seguí, R. M., García, G., Montañez, M., Zamora, P. A., et al. (2006). High expression level of recombinant human erythropoietin in the milk of non–transgenic goats. Journal of Biotechnology, 123, 225–235.

    Article  CAS  Google Scholar 

  16. Liu, Z. B., Han, Z. S., Li, Q. W., Yang, H., Lu, W. Z., & Li, W. Y. (2010). Enhanced expression of adenovirus encoding rhEPO assisted by BAPTA. Animal Biotechnology, 21, 164–169.

    Article  CAS  Google Scholar 

  17. Han, Z. S., Li, Q. W., Zhang, Z. Y., Yu, Y. S., Xiao, B., Wu, S. Y., et al. (2008). Adenoviral vector mediates high expression levels of human lactoferrin in the milk of rabbits. Journal of Microbiology and Biotechnology, 18, 153–159.

    CAS  Google Scholar 

  18. Xiao, B., Li, Q. W., Feng, B., Han, Z. S., Gao, W., Li, J., et al. (2008). High–level expression of recombinant human nerve growth factor beta in milk of nontransgenic rabbits. Journal of Bioscience and Bioengineering, 105, 327–334.

    Article  CAS  Google Scholar 

  19. Xiao, B., Li, Q., Feng, B., Han, Z., Gao, D., Zhao, R., et al. (2009). Expression of recombinant human nerve growth factor beta in milk of goats by recombinant replication-defective adenovirus. Applied Biochemistry and Biotechnology, 157, 357–366.

    Article  CAS  Google Scholar 

  20. Toledo, J. R., Sanchez, O., Montesino, R., Farnos, O., Rodríguez, M. P., Alfonso, P., et al. (2008). Highly protective E2–CSFV vaccine candidate produced in the mammary gland of adenoviral transduced goats. Journal of Biotechnology, 133, 370–376.

    Article  CAS  Google Scholar 

  21. Sanchez, O., Barrera, M., Farnós, O., Parra, N. C., Salgado, E. R., Saavedra, P. A., et al. (2014). Effectiveness of the E2-classical swine fever virus recombinant vaccine produced and formulated within whey from genetically transformed goats. Clinical and Vaccine Immunology, 21, 1628–1634.

    Article  CAS  Google Scholar 

  22. Yang, H., Li, Q. W., Han, Z. S., Hu, J. H., Li, W. Y., & Liu, Z. B. (2009). Recombinant human antithrombin expressed in the milk of non–transgenic goats exhibits high efficiency on rat DIC model. Journal of Thrombosis and Thrombolysis, 28, 449–457.

    Article  Google Scholar 

  23. Yang, H., Li, Q., Han, Z., & Hu, J. (2012). High level expression of recombinant human antithrombin in the mammary gland of rabbits by adenoviral vectors infection. Animal Biotechnology, 23, 89–100.

    Article  CAS  Google Scholar 

  24. Peters, S. P., Coyle, P., & Glew, R. H. (1976). Differentiation of beta–glucocerebrosidase from beta–glucosidase in human tissues using sodium taurocholate. Archives of Biochemistry and Biophysics, 175, 569–582.

    Article  CAS  Google Scholar 

  25. Huynh, H. T., Robitaille, G., & Turner, J. D. (1991). Establishment of bovine mammary epithelial cells (MAC–T): an in vitro model for bovine lactation. Experimental Cell Research, 197, 191–199.

    Article  CAS  Google Scholar 

  26. Abramoff, M. D., Magalhaes, P. J., & Ram, S. J. (2004). Image Processing with ImageJ. Biophotonics International, 11, 36–42.

    Google Scholar 

  27. Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass spectrometric sequencing of proteins silver–stained polyacrylamide gels. Analytical Chemistry, 68, 850–858.

    Article  CAS  Google Scholar 

  28. Carvalho, P. C., Fischer, J. S. G., Yates, J. R. and Barbosa, V. C. (2012) PatternLab: from mass spectra to label–free differential shotgun proteomics. Current Protocols in Bioinformatics. Chapter 13L Unit 13.19.

  29. Eng, J. K., Jahan, T. A., & Hoopmann, M. R. (2013). Comet: An open–source MS/MS sequence database search tool. Proteomics, 13, 22–24.

    Article  CAS  Google Scholar 

  30. Dinur, T., Grabowski, G. A., Desnick, R. J., & Gatt, S. (1984). Synthesis of a fluorescent derivative of glucosyl ceramide for the sensitive determination of glucocerebrosidase activity. Analytical Biochemistry, 136, 223–234.

    Article  CAS  Google Scholar 

  31. Barranger, J. A., & Ginns, E. I. (1989). Glucosylceramide lipidoses: Gaucher’s disease. In C. R. Scriver, A. L. Beaudet, S. W. Sly, & D. Valle (Eds.), The metabolic basis of inherited disease (pp. 1677–1698). New York: McGraw–Hill.

    Google Scholar 

  32. Bergmann, J. E., & Grabowski, G. A. (1989). Posttranslational processing of human lysosomal acid beta-glucosidase: a continuum of defects in Gaucher disease type 1 and type 2 fibroblasts. American Journal of Human Genetics, 44, 741–750.

    CAS  Google Scholar 

  33. Fabrega, S., Durand, P., Codogno, P., Bauvy, C., Delomenie, C., Henrissat, B., et al. (2000). Human glucocerebrosidase: heterologous expression of active site mutants in murine null cells. Glycobiology, 10, 1217–1224.

    Article  CAS  Google Scholar 

  34. Novo, J. B., Morganti, L., Moro, A. M., Paes Leme, A. F., Serrano, S. M., Raw, I., & Ho, P. L. (2012). Generation of a Chinese hamster ovary cell line producing recombinant human glucocerebrosidase. Journal of Biomedicine and Biotechnology, 2012, 875383.

    Article  Google Scholar 

  35. Rajala-Schultz, P. J., Gröhn, Y. T., McCulloch, C. E., & Guard, C. L. (1999). Effects of clinical mastitis on milk yield in dairy cows. Journal of Dairy Science, 82, 1213–1220.

    Article  CAS  Google Scholar 

  36. Wellenberg, G. J., van der Poel, W. H., & Van Oirschot, J. T. (2002). Viral infections and bovine mastitis: a review. Veterinary Microbiology, 88, 27–45.

    Article  CAS  Google Scholar 

  37. Grabowski, G. A. (2006). Delivery of lysosomal enzymes for therapeutic use: glucocerebrosidase as an example. Expert opinion on drug delivery, 3, 771–782.

    Article  CAS  Google Scholar 

  38. Friedman, B., Vaddi, K., Preston, C., Mahon, E., Cataldo, J. R., & McPherson, J. M. (1999). A comparison of the pharmacological properties of carbohydrate remodeled recombinant and placental–derived beta–glucocerebrosidase: implications for clinical efficacy in treatment of Gaucher disease. Blood, 93, 2807–2816.

    CAS  Google Scholar 

  39. Van Berkel, P. H., Welling, M. M., Geerts, M., van Veen, H. A., Ravensbergen, B., Salaheddine, M., et al. (2002). Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nature Biotechnology, 20, 484–487.

    Article  Google Scholar 

  40. Edmunds, T., Van Patten, S. M., Pollock, J., Hanson, E., Bernasconi, R., Higgins, E., et al. (1998). Transgenically produced human antithrombin: structural and functional comparison to human plasma–derived antithrombin. Blood, 91, 4561–4571.

    CAS  Google Scholar 

  41. Koles, K., van Berkel, P. H., Pieper, F. R., Nuijens, J. H., Mannesse, M. L., Vliegenthart, J. F., & Kamerling, J. P. (2004). N- and O-glycans of recombinant human C1 inhibitor expressed in the milk of transgenic rabbits. Glycobiology, 14, 51–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from FINEP/MCT/Brazil. K.C.S. Tavares was supported by a CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) fellowship from the Brazilian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Relly Bertolini.

Ethics declarations

Ethical approval

All animal care and use were conducted in strict accordance with the Animal Research Committee guidelines of University of Fortaleza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavares, K.C.S., Dias, A.C.d.O., Lazzarotto, C.R. et al. Transient Expression of Functional Glucocerebrosidase for Treatment of Gaucher’s Disease in the Goat Mammary Gland. Mol Biotechnol 58, 47–55 (2016). https://doi.org/10.1007/s12033-015-9902-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9902-1

Keywords

Navigation