Skip to main content
Log in

Evaluation of the Conformational Stability of Recombinant Desulfurizing Enzymes from a Newly Isolated Rhodococcus sp.

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Metabolic pathways of aerobic bacteria able to assimilate sulfur can provide biocatalysts for biodesulfurization of petroleum and of other sulfur-containing pollutants. Of major interest is the so-called “4S pathway,” in that C–S bonds are specifically cleaved leaving the carbon skeleton of substrates intact. This pathway is carried out by four enzymes, named Dsz A, B, C, and D. In view of a possible application of recombinant Dsz enzymes in biodesulfurization treatments, we have investigated the structural features of enzymes cloned from a Rhodococcus strain isolated from polluted environmental samples and their resistance to temperature (20–95 °C) and to organic solvents (5, 10, and 20 % v/v methanol, acetonitrile, hexane, and toluene). Changes in protein structures were assessed by circular dichroism and intrinsic fluorescence spectroscopy. We found that all Dsz proteins are unfolded by temperatures in the range 45–60 °C and by all solvents tested, with the most dramatic effect being produced by toluene. These results suggest that stabilization of the biocatalysts by protein engineering will be necessary for developing biodesulfurization technologies based on Dsz enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DBT:

Dibenzothiophene

DBTO:

DBT sulfoxide

DBTO2 :

DBT sulfone

HDS:

Hydrodesulfurization

2-HBP:

2-Hydroxybiphenyl

FMN:

Flavin mononucleotide

References

  1. Mohebali, G., & Ball, A. S. (2008). Biocatalytic desulfurization (BDS) of petrodiesel fuels. Microbiology, 154, 2169–2183.

    Article  CAS  Google Scholar 

  2. Babich, I. V., & Moulijn, A. C. (2003). Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel, 82, 607–631.

    Article  CAS  Google Scholar 

  3. Furimsky, E., & Massoth, F. E. (1999). Deactivation of hydroprocessing catalysts. Catalysis Today, 52, 381–495.

    Article  CAS  Google Scholar 

  4. McFarland, B. L. (1999). Biodesulfurization. Current Opinion in Microbiology, 2, 257–264.

    Article  CAS  Google Scholar 

  5. Kilbane, J. J, 2nd. (2006). Microbial biocatalyst developments to upgrade fossil fuels. Current Opinion in Biotechnology, 17, 305–314.

    Article  CAS  Google Scholar 

  6. Li, M. Z., Squires, C. H., Monticello, D. J., & Childs, J. D. (1996). Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8. Journal of Bacteriology, 178, 6409–6418.

    CAS  Google Scholar 

  7. Shavandi, M., Soheili, M., Zareian, S., Akbari, N., & Khajeh, K. (2013). The gene cloning, overexpression, purification, and characterization of dibenzothiophenemonooxygenase and desulfinase from Gordonia alkanivorans RIPI90A. Journal of Petroleum Science and Technology, 3, 57–64.

    Google Scholar 

  8. Ma, T., Li, S., Li, G., Wang, R., Liang, F., et al. (2006). Cloning and expressing DBT (dibenzothiophene) monooxygenase gene (dszC) from Rhodococcus sp. DS-3 in Escherichia coli. Frontiers of Biology in China, 4, 375–380.

    Article  Google Scholar 

  9. Matsubara, T., Ohshiro, T., Nishina, Y., & Izumi, Y. (2001). Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Applied and Environment Microbiology, 67, 1179–1184.

    Article  CAS  Google Scholar 

  10. Zhang, Q., Tong, M. Y., Li, Y. S., Gao, H. J., & Fang, X. C. (2007). Extensive desulfurization of diesel by Rhodococcus erythropolis. Biotechnology Letters, 29, 123–127.

    Article  Google Scholar 

  11. Yu, B., Ma, C., Zhou, W., Wang, Y., Cai, X., et al. (2006). Microbial desulfurization of gasoline by free whole-cells of Rhodococcus erythropolis XP. FEMS Microbiology Letters, 258, 284–289.

    Article  CAS  Google Scholar 

  12. Alves, L., Salgueiro, R., Rodrigues, C., Mesquita, E., Matos, J., et al. (2005). Desulfurization of dibenzothiophene, benzothiophene, and other thiophene analogs by a newly isolated bacterium, Gordonia alkanivorans strain 1B. Applied Biochemistry and Biotechnology, 120, 199–208.

    Article  CAS  Google Scholar 

  13. Alves, L., Melo, M., Mendonça, D., Simões, F., Matos, J., Tenreiro, R., & Gírio, F. M. (2007). Sequencing, cloning and expression of the dsz genes required for dibenzothiophene sulfone desulfurization from Gordonia alkanivorans strain 1B. Enzyme and Microbial Technol, 40, 1598–1603.

    Article  CAS  Google Scholar 

  14. Tao, F., Yu, B., Xu, P., & Ma, C. Q. (2006). Biodesulfurization in biphasic systems containing organic solvents. Applied and Environment Microbiology, 72, 4604–4609.

    Article  CAS  Google Scholar 

  15. Konishi, J., Onaka, T., Ishii, Y., & Suzuki, M. (2000). a) Demonstration of the carbon-sulfur bond targeted desulfurization of benzothiophene by thermophilic Paenibacillus sp. strain A11-2 capable of desulfurizing dibenzothiophene. FEMS Microbiology Letters, 187, 151–154.

    Article  CAS  Google Scholar 

  16. Li, G. Q., Ma, T., Li, S. S., Li, H., Liang, F. L., et al. (2007). Improvement of dibenzothiophene desulfurization activity by removing the gene overlap in the dsz operon. Bioscience, Biotechnology, and Biochemistry, 71, 849–854.

    Article  CAS  Google Scholar 

  17. Hirasawa, K., Ishii, Y., Kobayashi, M., Koizumi, K., & Maruhashi, K. (2001). Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Bioscience, Biotechnology, and Biochemistry, 65, 239–246.

    Article  CAS  Google Scholar 

  18. Studier, F. W. (2005). Protein production by auto-induction in high density shaking cultures. Protein Expression and Purification, 41, 207–234.

    Article  CAS  Google Scholar 

  19. Chang, J. H., Rhee, S. K., Chang, Y. K., & Chang, H. N. (1998). Desulfurization of diesel oils by a newly isolated dibenzothiophene-degrading Nocardia sp. strain CYKS2. Biotechnology Progress, 14, 851–855.

    Article  CAS  Google Scholar 

  20. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning. A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  21. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  22. Sreerama, N., & Woody, R. W. (2000). Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical Biochemistry, 287, 252–260.

    Article  CAS  Google Scholar 

  23. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  Google Scholar 

  24. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  25. Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22, 195–201.

    Article  CAS  Google Scholar 

  26. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., et al. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42, W252–W258.

    Article  CAS  Google Scholar 

  27. Remmert, M., Biegert, A., Hauser, A., & Soding, J. (2012). HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nature Methods, 9, 173–175.

    Article  CAS  Google Scholar 

  28. Piddington, C. S., Kovacevich, B. R., & Rambosek, J. (1995). Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Applied and Environment Microbiology, 61, 468–475.

    CAS  Google Scholar 

  29. Denome, S. A., Oldfield, C., Nash, L. J., & Young, K. D. (1994). Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. Journal of Bacteriology, 176, 6707–6716.

    CAS  Google Scholar 

  30. Ellis, H. R. (2010). The FMN-dependent two-component monooxygenase systems. Archives of Biochemistry and Biophysics, 497, 1–12.

    Article  CAS  Google Scholar 

  31. Tu, S. C., Lei, B., Liu, M., Tang, C. K., & Jeffers, C. (2000). Probing the mechanisms of the biological intermolecular transfer of reduced flavin. Journal of Nutrition, 130, 331S–332S.

    CAS  Google Scholar 

  32. Tu, S. C. (2001). Reduced flavin: donor and acceptor enzymes and mechanisms of channeling. Antioxidants & Redox Signaling, 3, 881–897.

    Article  CAS  Google Scholar 

  33. Tu, S. C. (2008). Activity coupling and complex formation between bacterial luciferase and flavin reductases. Photochemical & Photobiological Sciences, 7, 183–188.

    Article  CAS  Google Scholar 

  34. Lei, B., & Tu, S. C. (1998). Mechanism of reduced flavin transfer from Vibrio harveyi NADPH-FMN oxidoreductase to luciferase. Biochemistry, 37, 14623–14629.

    Article  CAS  Google Scholar 

  35. Jeffers, C. E., & Tu, S. C. (2001). Differential transfers of reduced flavin cofactor and product by bacterial flavin reductase to luciferase. Biochemistry, 40, 1749–1754.

    Article  CAS  Google Scholar 

  36. Ohshiro, T., Aoi, Y., Torii, K., & Izumi, Y. (2002). Flavin reductase coupling with two monooxygenases involved in dibenzothiophene desulfurization: purification and characterization from a non-desulfurizing bacterium, Paenibacillus polymyxa A-1. Applied Microbiology and Biotechnology, 59, 649–657.

    Article  CAS  Google Scholar 

  37. Louie, T. M., Xie, X. S., & Xun, L. (2003). Coordinated production and utilization of FADH2 by NAD(P)H-flavin oxidoreductase and 4-hydroxyphenylacetate 3-monooxygenase. Biochemistry, 42, 7509–7517.

    Article  CAS  Google Scholar 

  38. Gisi, M. R., & Xun, L. (2003). Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:flavin adenine dinucleotide oxidoreductase (TftC) of Burkholderia cepacia AC1100. Journal of Bacteriology, 185, 2786–2792.

    Article  CAS  Google Scholar 

  39. Ishii, Y., Konishi, J., Suzuki, M., & Maruhashi, K. (2000). Cloning and expression of the gene encoding the thermophilic NAD(P)H-FMN oxidoreductase coupling with the desulfurization enzymes from Paenibacillus sp. A11-2. Journal of Bioscience and Bioengineering, 90, 591–599.

    Article  CAS  Google Scholar 

  40. van Berkel, W. J., Kamerbeek, N. M., & Fraaije, M. W. (2006). Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. Journal of Biotechnology, 124, 670–689.

    Article  Google Scholar 

  41. Li, L., Liu, X., Yang, W., Xu, F., Wang, W., et al. (2008). Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. Journal of Molecular Biology, 376, 453–465.

    Article  CAS  Google Scholar 

  42. Ohshiro, T., Kojima, T., Torii, K., Kawasoe, H., & Izumi, Y. (1999). Purification and characterization of dibenzothiophene (DBT) sulfone monooxygenase, an enzyme involved in DBT desulfurization, from Rhodococcus erythropolis D-1. Journal of Bioscience and Bioengineering, 88, 610–616.

    Article  CAS  Google Scholar 

  43. Feng, L., Wang, W., Cheng, J., Ren, Y., Zhao, G., et al. (2007). Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A, 104, 5602–5607.

    Article  CAS  Google Scholar 

  44. Liu, S., Zhang, C., Su, T., Wei, T., Zhu, D., et al. (2014). Crystal structure of DszC from Rhodococcus sp. XP at 1.79 A. Proteins, 82, 1708–1720.

    Article  CAS  Google Scholar 

  45. Duan, X., Zhang, L., Zhou, D., Ji, K., Ma, T., et al. (2013). Crystallization and preliminary structural analysis of dibenzothiophene monooxygenase (DszC) from Rhodococcus erythropolis. Acta Crystallographica, Section F: Structural Biology and Crystallization Communications, 69, 597–601.

    CAS  Google Scholar 

  46. Zhang, L., Duan, X., Zhou, D., Dong, Z., Ji, K., et al. (2014). Structural insights into the stabilization of active, tetrameric DszC by its C-terminus. Proteins, 82, 2733–2743.

    Article  CAS  Google Scholar 

  47. Guan, L. J., Lee, W. C., Wang, S., Ohshiro, T., Izumi, Y. et al. (2015). Crystal structures of apo-DszC and FMN-bound DszC from Rhodococcus erythropolis D-1. FEBS Journal, 282, 3126–3135.

    Article  CAS  Google Scholar 

  48. Ohshiro, T., Ohkita, R., Takikawa, T., Manabe, M., Lee, W. C., et al. (2007). Improvement of 2′-hydroxybiphenyl-2-sulfinate desulfinase, an enzyme involved in the dibenzothiophene desulfurization pathway, from Rhodococcus erythropolis KA2-5-1 by site-directed mutagenesis. Bioscience, Biotechnology, and Biochemistry, 71, 2815–2821.

    Article  CAS  Google Scholar 

  49. Zhang, Y., Edwards, T. E., Begley, D. W., Abramov, A., Thompkins, K. B., et al. (2011). Structure of nitrilotriacetate monooxygenase component B from Mycobacterium thermoresistibile. Acta Crystallographica, Section F: Structural Biology and Crystallization Communications, 67, 1100–1105.

    Article  CAS  Google Scholar 

  50. Knobel, H. R., Egli, T., & van der Meer, J. R. (1996). Cloning and characterization of the genes encoding nitrilotriacetate monooxygenase of Chelatobacter heintzii ATCC 29600. Journal of Bacteriology, 178, 6123–6132.

    CAS  Google Scholar 

  51. Holm, L., & Rosenstrom, P. (2010). Dali server: Conservation mapping in 3D. Nucleic Acids Research, 38, W545–W549.

    Article  CAS  Google Scholar 

  52. Doble, M., & Kruthiventi, A. K. (2005). Biotreatment of Industrial Effluents. Burlington: Elsevier Butterworth-Heinemann.

    Google Scholar 

  53. Stapleton, R. D. J., & Singh, V. P. E. (2002). Biotransformations: Bioremediation technology for health and environmental protection. In: Progress in industrial microbiology. Amsterdam, The Netherlands: Elsevier B.V.

  54. Kamatari, Y. O., Konno, T., Kataoka, M., & Akasaka, K. (1996). The methanol-induced globular and expanded denatured states of cytochrome c: A study by CD fluorescence, NMR and small-angle X-ray scattering. Journal of Molecular Biology, 259, 512–523.

    Article  CAS  Google Scholar 

  55. Uversky, V. N., Narizhneva, N. V., Kirschstein, S. O., Winter, S., & Lober, G. (1997). Conformational transitions provoked by organic solvents in beta-lactoglobulin: can a molten globule like intermediate be induced by the decrease in dielectric constant? Folding and Design, 2, 163–172.

    Article  CAS  Google Scholar 

  56. Konishi, J., Ishii, Y., Onaka, T., Ohta, Y., Suzuki, M., et al. (2000). b) Purification and characterization of dibenzothiophene sulfone monooxygenase and FMN-dependent NADH oxidoreductase from the thermophilic bacterium Paenibacillus sp. strain A11-2. Journal of Bioscience and Bioengineering, 90, 607–613.

    Article  CAS  Google Scholar 

  57. Bhatia, S., & Sharma, D. K. (2012). Thermophilic desulfurization of dibenzothiophene and different petroleum oils by Klebsiella sp. 13T. Environmental Science and Pollution Research International, 19, 3491–3497.

    Article  CAS  Google Scholar 

  58. Aggarwal, S., Karimi, I. A., Kilbane Ii, J. J., & Lee, D. Y. (2012). Roles of sulfite oxidoreductase and sulfite reductase in improving desulfurization by Rhodococcus erythropolis. Molecular BioSystems, 8, 2724–2732.

    Article  CAS  Google Scholar 

  59. Santarossa, G., Gatti Lafranconi, P., Alquati, C., DeGioia, L., Alberghina, L., Fantucci, P., & Lotti, M. (2005). Mutations in the ‘‘lid’’ region affect chain length specificity and thermostability of a Pseudomonas fragi lipase. FEBS Letters, 579, 2383–2386.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CORIMAV, a consortium between Pirelli and University of Milano-Bicocca, through a doctoral fellowship to F.P. The authors are grateful to C. Santambrogio for fruitful discussion and to J. Pleiss, University of Stuttgart, for help in the bioinformatic analysis and for hosting F.P. for a stage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Lotti.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests and that all authors read and approved this manuscript.

Ethical approval

This research did not imply human participants or animals.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parravicini, F., Brocca, S. & Lotti, M. Evaluation of the Conformational Stability of Recombinant Desulfurizing Enzymes from a Newly Isolated Rhodococcus sp.. Mol Biotechnol 58, 1–11 (2016). https://doi.org/10.1007/s12033-015-9897-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9897-7

Keywords

Navigation