Skip to main content

Advertisement

Log in

Novel 5′/3′RACE Method for Amplification and Determination of Single-Stranded RNAs Through Double-Stranded RNA (dsRNA) Intermediates

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

To acquire the full-length sequences and to determine the 5′/3′ends of the RNA genomes and mRNA transcripts using the rapid amplification of cDNA ends (RACE) protocols—via cDNA or mRNA templates—are a great challenge. This 4-steps RNA-based RACE method uses different ways to determine the RNA ends through a double-stranded (ds) RNA intermediate (dsRNA-RACE). In the first step a complementary RNA strand is synthesised by Phi6 RNA replicase enzyme next to the template ssRNA forming a dsRNA intermediate. The following steps include adapter ligation, nucleic acid purification and two classical methods with minor modifications reverse transcription and polymerase chain reaction. The dsRNA-RACE protocol could be used in wide variety of ssRNA (cellular, viral, bacterial, etc.) templates in the field of microbiology and cellular biology and suitable for the amplification of full-length RNAs including the 5′/3′ends. This is a novel, expansively utilizable molecular tool with fewer disadvantages than the existing 5′/3′RACE approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Frohman, M. A., Dush, M. K., & Martin, G. R. (1988). Rapid production of full-length cDNAs from rare transcripts by amplification using a single gene-specific oligonucleotide primer. Proceedings of the National Academy of Sciences of the United States of America, 85, 8998–9002.

    Article  CAS  Google Scholar 

  2. Scotto-Lavino, E., Du, G., & Frohman, M. (2006). 5′end cDNA amplification using classic RACE. Nature Protocols, 1, 2555–2562.

    Article  CAS  Google Scholar 

  3. Loh, E. L., Elliot, J. F., Cwirla, S., Lanier, L. L., & Davis, M. M. (1989). Polymerase chain reaction with single sided specificity: Analysis of T cell receptor δ chain. Science, 243, 217–220.

    Article  CAS  Google Scholar 

  4. Ohara, O., Dorit, R. I., & Gilbert, W. (1989). One-sided PCR: The amplification of cDNA. Proceedings of the National Academy of Sciences USA, 86, 5673–5677.

    Article  CAS  Google Scholar 

  5. Chenchic, A., Diachenko, L., Moqadam, F., Tarabykin, V., Lukyanov, S., & Siebert, P. D. (1996). Full-length cDNA cloning and determination of mRNA 5′ and 3′ends by amplification of adapter-ligated cDNA. BioTechniques, 21, 526–534.

    Google Scholar 

  6. Wakuda, M., Pongsuwanna, Y., & Taniguchi, K. (2005). Complete nucleotide sequences of two RNA segments of human picobirnavirus. Journal of Virological Methods, 126, 165–169.

    Article  CAS  Google Scholar 

  7. Reuter, G., Boros, Á., Delwart, E., & Pankovics, P. (2013). Novel seadornavirus (family Reoviridae) related to Banna virus in Europe. Archives of Virology, 158, 2163–2167.

    Article  CAS  Google Scholar 

  8. Huang, J. C., & Chen, F. (2006). Simultaneous amplification of 5′ and 3′ cDNA ends based on template-switching effect and inverse PCR. BioTechniques, 40, 187–189.

    Article  CAS  Google Scholar 

  9. Naruyama, I. N., Rakow, T. L., & Maruyama, H. I. (1995). cRACE: a simple method for identification of the 5′end of mRNAs. Nucleic Acids Research, 23, 3796–3797.

    Article  Google Scholar 

  10. Boros, Á., Pankovics, P., Simmonds, P., & Reuter, G. (2011). Novel positive-sense, single-stranded RNA (+ssRNA) virus with di-cistronic genome from intestinal content of freshwater carp (Cyprinus carpio). PLoS ONE, 6, e29145.

    Article  CAS  Google Scholar 

  11. Arezi, B., & Hogrefe, H. (2009). Novel mutations in moloney murine leukemia virus reverse transcriptase increase thremostability through tighter binding to template-primer. Nucleic Acids Research, 37, 473–481.

    Article  CAS  Google Scholar 

  12. Zhuang, F., Fuchs, R. T., & Robb, G. B. (2012). Small RNA expression profiling by high-throughput sequencing: Implications of enzymatic manipulation. Journal of Nucleic Acids, 2012, 360358.

    Article  Google Scholar 

  13. Scotto-Lavino, E., Du, G., & Frohman, M. (2007). Amplification of 5′end cDNA with new RACE. Nature Protocols, 1, 3056–3061.

    Article  Google Scholar 

  14. Szymkowiak, C., Kwan, W. S., Su, Q., Toner, T. J., Shaw, A. R., & Youil, R. (2003). Rapid method for the characterization of 3′ and 5′ UTRs of influenza viruses. Journal of Virological Methods, 107, 15–20.

    Article  CAS  Google Scholar 

  15. Kuhn, J., & Binder, S. (2002). RT-PCR analysis of 5′ to 3′-end-ligated mRNAs identifies the extremities of cox2 transcripts in pea mitochondria. Nucleic Acids Research, 30, 439–446.

    Article  CAS  Google Scholar 

  16. Rozovics, J. M., Virgen-Slane, R., & Semler, B. L. (2011). Engineered picornavirus VPg-RNA substrates: Analysis of a tyrosyl-RNA phosphodiesterase activity. PLoS ONE, 6, e16559.

    Article  CAS  Google Scholar 

  17. Makeyev, E. V., & Bamford, D. H. (2000). The polymerase subunit of a dsRNA virus plays a central role in the regulation of viral RNA metabolism. EMBO Journal, 19, 6275–6284.

    Article  CAS  Google Scholar 

  18. Makeyev, E. V., & Bamford, D. H. (2000). Replicase activity of purified recombinant protein P2 of double-stranded RNA bacteriophage φ6. EMBO Journal, 19, 124–133.

    Article  CAS  Google Scholar 

  19. Makeyev, E. V., & Grimes, J. M. (2004). RNA-dependent RNA polymerases of dsRNA bacteriophages. Virus Research, 101, 45–55.

    Article  CAS  Google Scholar 

  20. Yang, H., Makeyev, E. V., & Bamford, D. H. (2001). Comparison of polymerase subunits from double-stranded RNA bacteriophages. Journal of Virology, 75, 11088–11095.

    Article  CAS  Google Scholar 

  21. Pankovics, P., Boros, Á., & Reuter, G. (2012). Novel picornavirus in domesticated common quail (Coturnix coturnix) in Hungary. Archives of Virology, 157, 525–530.

    Article  CAS  Google Scholar 

  22. Herbert, Z., Pollák, E., Zougman, A., Boros, Á., Kapan, N., & Molnár, L. (2009). Identification of novel neuropeptides in the ventral nerve cord ganglia and their targets in an annelid worm, Eisenia fetida. Journal of Comparative Neurology, 514, 415–432.

    Article  CAS  Google Scholar 

  23. Walker, S. E., & Lorsch, J. (2013). RNA purification–precipitation methods. Methods in Enzymology, 530, 337–343.

    Article  CAS  Google Scholar 

  24. Alfson, K. J., Beadles, M. W., & Griffiths, A. (2014). A new approach to determining whole viral genomic sequences including termini using a single deep sequencing run. Journal of Virological Methods, 208, 1–5.

    Article  CAS  Google Scholar 

  25. Paschal, B. M., McReynolds, L. A., Noren, C. J. & Nichols, N. M. (2008) RNA polymerases. Current Protocols in Molecular Biology Chapter 3, Unit 3.8.

  26. van Ooij, M. J., Polacek, C., Glaudemans, D. H., Kuijpers, J., van Kuppeveld, F. J., Andino, R., et al. (2006). Polyadenylation of genomic RNA and initiation of antigenomic RNA in a positive-strand RNA virus are controlled by the same cis-element. Nucleic Acids Research, 34, 2953–2965.

    Article  Google Scholar 

  27. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). How cells read the genome: From DNA to RNA, in molecular biology of the cell (4th ed.). New York: Garland Science.

    Google Scholar 

  28. Lin, L., Fevery, J., & Hiem Yap, S. (2002). A novel strand-specific RT-PCR for detection of hepatitis C virus negative-strand RNA (replicative intermediate): evidence of absence or very low level of HCV replication in peripheral blood mononuclear cells. Journal of Virological Methods, 100, 97–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Hungarian Scientific Research Fund (OTKA K83013 and OTKA/NKFIH K111615). The authors of this manuscript have no competing interests to any company or manufacture that influence the results and discussion of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Reuter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankovics, P., Boros, Á. & Reuter, G. Novel 5′/3′RACE Method for Amplification and Determination of Single-Stranded RNAs Through Double-Stranded RNA (dsRNA) Intermediates. Mol Biotechnol 57, 974–981 (2015). https://doi.org/10.1007/s12033-015-9889-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9889-7

Keywords

Navigation