Skip to main content
Log in

Large Fragment of DNA Polymerase I from Geobacillus sp. 777: Cloning and Comparison with DNA Polymerases I in Practical Applications

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A truncated gene of DNA polymerase I from the thermophilic bacteria Geobacillus sp. 777 encoding a large fragment of enzyme (LF Gss pol) was cloned and sequenced. The resulting sequence is 1776-bp long and encodes a 592 aa protein with a predicted molecular mass of 69.8 kDa. Enzyme was overexpressed in E. coli, purified by metal-chelate chromatography, and biochemically characterized. The specific activity of LF Gss pol is 104,000 U/mg (one unit of enzyme was defined as the amount of enzyme that incorporated 10 nmol of dNTP into acid insoluble material in 30 min at 65 °C). The properties of LF Gss pol were compared to commercially available large fragments of DNA polymerase I from G. stearothermophilus (LF Bst pol) and Bacillus smithii (LF Bsm pol). Studied enzymes showed maximum activity at similar pH and concentrations of monovalent/divalent ions, whereas LF Gss pol and LF Bst pol were more thermostable than LF Bsm pol. LF Gss pol is more resistant to enzyme inhibitors (SYBR Green I, heparin, ethanol, urea, blood plasma) in comparison with LF Bst pol and LF Bsm pol. LF Gss pol is also suitable for loop-mediated isothermal amplification and whole genome amplification of human genomic DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28, E63.

    Article  CAS  Google Scholar 

  2. Francois, P., Boehme, C. C., Bonetti, E. J., Hibbs, J., Notomi, T., Perkins, M. D., et al. (2011). Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunology and Medical Microbiology, 62, 41–48.

    Article  CAS  Google Scholar 

  3. Zhu, Q., Gao, Y., Yu, B., Ren, H., Qiu, L., Han, S., et al. (2012). Self-priming compartmentalization digital LAMP for point-of-care. Lab on a Chip, 12, 4755–4763.

    Article  CAS  Google Scholar 

  4. Hara-Kudo, Y., Yoshino, M., Kojima, T., & Ikedo, M. (2005). Loop-mediated isothermal amplification for the rapid detection of Salmonella. FEMS Microbiology Letters, 253, 155–161.

    Article  CAS  Google Scholar 

  5. Gudnason, H., Dufva, M., Bang, D. D., & Wolff, A. (2007). Comparison of multiple DNA dyes for real-time PCR: Effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Research, 35, e127.

    Article  Google Scholar 

  6. Chander, Y., Koelbl, J., Puckett, J., Moser, M. J., Klingele, A. J., Liles, M. R., et al. (2014). A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP). Frontiers in Microbiology, 5, 395.

    Article  Google Scholar 

  7. Dean, F. B., Hosono, S., Fang, L., Wu, X., Faruqi, A. F., Bray-Ward, P., et al. (2002). Comprehensive human genome amplification using multiple displacement amplification. Proceedings of the National Academy of Sciences USA, 99, 5261–5266.

    Article  CAS  Google Scholar 

  8. Nelson, J. R. (2014). Random-primed, Phi29 DNA polymerase-based whole genome amplification. Current Protocols in Molecular Biology, 105, 15.13.1–15.13.16.

    Article  Google Scholar 

  9. Spits, C., Le Caignec, C., De Rycke, M., Van Haute, L., Van Steirteghem, A., Liebaers, I., & Sermon, K. (2006). Optimization and evaluation of single-cell whole-genome multiple displacement amplification. Human Mutation, 27, 496–503.

    Article  CAS  Google Scholar 

  10. Meintanis, C., Chalkou, K. I., Kormas, K. A., Lymperopoulou, D. S., Katsifas, E. A., Hatzinikolaou, D. G., & Karagouni, A. D. (2008). Application of rpoB sequence similarity analysis, REP-PCR and BOX-PCR for the differentiation of species within the genus Geobacillus. Letters in Applied Microbiology, 46, 395–401.

    Article  CAS  Google Scholar 

  11. Kuisiene, N., Raugalas, J., & Chitavichius, D. (2009). Phylogenetic, inter, and intraspecific sequence analysis of spo0A gene of the genus Geobacillus. Current Microbiology, 58, 547–553.

    Article  CAS  Google Scholar 

  12. Compton, J. (1991). Nucleic acid sequence-based amplification. Nature, 350, 91–92.

    Article  CAS  Google Scholar 

  13. Fire, A., & Xu, S. Q. (1995). Rolling replication of short DNA circles. Proceedings of the National Academy of Sciences USA, 92, 4641–4645.

    Article  CAS  Google Scholar 

  14. Sellmann, E., Schröder, K. L., Knoblich, I. M., & Westermann, P. (1992). Purification and characterization of DNA polymerases from Bacillus species. Journal of Bacteriology, 174, 4350–4355.

    CAS  Google Scholar 

  15. Kaboev, O. K., Luchkina, L. A., Akhmedov, A. T., & Bekker, M. L. (1981). Purification and properties of deoxyribonucleic acid polymerase from Bacillus stearothermophilus. Journal of Bacteriology, 145, 21–26.

    CAS  Google Scholar 

  16. Uemori, T., Ishino, Y., Fujita, K., Asada, K., & Kato, I. (1993). Cloning of the DNA polymerase gene of Bacillus caldotenax and characterization of the gene product. Journal of Biochemistry, 113, 401–410.

    CAS  Google Scholar 

  17. Sandalli, C., Singh, K., Modak, M. J., Ketkar, A., Canakci, S., Demir, I., & Belduz, A. O. (2009). A new DNA polymerase I from Geobacillus caldoxylosilyticus TK4: Cloning, characterization, and mutational analysis of two aromatic residues. Applied Microbiology and Biotechnology, 84, 105–117.

    Article  CAS  Google Scholar 

  18. Aliotta, J. M., Pelletier, J. J., Ware, J. L., Moran, L. S., Benner, J. S., & Kong, H. (1996). Thermostable Bst DNA polymerase I lacks a 3′ → 5′ proofreading exonuclease activity. Genetic Analysis, 12, 185–195.

    Article  CAS  Google Scholar 

  19. Çağlayan, M., & Bilgin, N. (2011). Cloning and sequence analysis of novel DNA polymerases from thermophilic Geobacillus species isolated from hot springs in Turkey: Characterization of a DNA polymerase I from Geobacillus kaue strain NB. Applied Biochemistry and Biotechnology, 165, 1188–1200.

    Article  Google Scholar 

  20. Stenesh, J., & Roe, B. A. (1972). DNA polymerase from mesophilic and thermophilic bacteria. Biochimica et Biophysica Acta, 272, 156–166.

    Article  CAS  Google Scholar 

  21. Dinsdale, A. E., Halket, G., Coorevits, A., Van Landschoot, A., Busse, H. J., De Vos, P., & Logan, N. A. (2011). Emended descriptions of Geobacillus thermoleovorans and Geobacillus thermocatenulatus. International Journal of Systematic and Evolutionary Microbiology, 61, 1802–1810.

    Article  CAS  Google Scholar 

  22. Nazina, T. N., Tourova, T. P., Poltaraus, A. B., Novikova, E. V., Grigoryan, A. A., Ivanova, A. E., et al. (2001). Taxonomic study of aerobic thermophilic bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus th. International Journal of Systematic and Evolutionary Microbiology, 51, 433–446.

    Article  CAS  Google Scholar 

  23. Nakamura, L. K., Blumenstock, I., & Claus, D. (1988). Taxonomic study of Bacillus coagulans Hammer 1915 with a proposal for Bacillus smithii sp. nov. International Journal of Systematic Bacteriology, 38, 63–73.

    Article  CAS  Google Scholar 

  24. Patel, J. C., Oberstaller, J., Xayavong, M., Narayanan, J., DeBarry, J. D., Srinivasamoorthy, G., et al. (2013). Real-time loop-mediated isothermal amplification (RealAmp) for the species-specific identification of Plasmodium vivax. PLoS One, 8, e54986.

    Article  CAS  Google Scholar 

  25. Aviel-Ronen, S., Zhu, C. Q., Coe, B. P., Liu, N., Watson, S. K., Lam, W. L., & Tsao, M. S. (2006). Large fragment Bst DNA polymerase for whole genome amplification of DNA from formalin-fixed paraffin-embedded tissues. BMC Genomics, 7, 312.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Mariya Smetanina and Dr. Svitlana Kurinna for excellent assistance in manuscript translation. Authors also greatly appreciate valuable advices provided by Dr. Ekaterina Belousova and Dr. Pavel Pestryakov during the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor P. Oscorbin.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oscorbin, I.P., Boyarskikh, U.A. & Filipenko, M.L. Large Fragment of DNA Polymerase I from Geobacillus sp. 777: Cloning and Comparison with DNA Polymerases I in Practical Applications. Mol Biotechnol 57, 947–959 (2015). https://doi.org/10.1007/s12033-015-9886-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9886-x

Keywords

Navigation