Molecular Biotechnology

, Volume 57, Issue 8, pp 767–780 | Cite as

A Novel Terminator Primer and Enhancer Reagents for Direct Expression of PCR-Amplified Genes in Mammalian Cells

  • Mikiko NakamuraEmail author
  • Ayako Suzuki
  • Junko Akada
  • Tohru Yarimizu
  • Ryo Iwakiri
  • Hisashi Hoshida
  • Rinji Akada


Escherichia coli plasmids are commonly used for gene expression experiments in mammalian cells, while PCR-amplified DNAs are rarely used even though PCR is a much faster and easier method to construct recombinant DNAs. One difficulty may be the limited amount of DNA produced by PCR. For direct utilization of PCR-amplified DNA in transfection experiments, efficient transfection with a smaller amount of DNA should be attained. For this purpose, we investigated two enhancer reagents, polyethylene glycol and tRNA, for a chemical transfection method. The addition of the enhancers to a commercial transfection reagent individually and synergistically exhibited higher transfection efficiency applicable for several mammalian cell culture lines in a 96-well plate. By taking advantage of a simple transfection procedure using PCR-amplified DNA, SV40 and rabbit β-globin terminator lengths were minimized. The terminator length is short enough to design in oligonucleotides; thus, terminator primers can be used for the construction and analysis of numerous mutations, deletions, insertions, and tag-fusions at the 3′-terminus of any gene. The PCR-mediated gene manipulation with the terminator primers will transform gene expression by allowing for extremely simple and high-throughput experiments with small-scale, multi-well, and mammalian cell cultures.


Transfection enhancer Terminator primer Linear DNA Polyethylene glycol Transfer RNA (tRNA) PCR Oligonucleotide primer Expression construct 



We would like to thank Yukie Misumi for technical assistance. This study was supported in part by the JSPS KAKENHI (Grant Nos. 25660080, 24658096) and the Adaptable and Seamless Technology Transfer Program through Target-Driven R&D (JST, Japan), and the YU “Pump-Priming Program” for fostering Research activities.

Conflicts of interest

Mikiko Nakamura, Ayako Suzuki, Junko Akada, Tohru Yarimizu, and Hisashi Hoshida: No competing interests exist. Rinji Akada: Yamaguchi University receives grant support from KOHJIN Life Sciences for studies in which Rinji Akada serves as the principal investigator. Ryo Iwakiri: As an employee of KOHJIN Life Sciences, Ryo Iwakiri participated in the development of the transfection enhancers but not as an applicant on a patent belonging to Yamaguchi University. These associations do not alter the authors’ adherence to Molecular Biotechnology policies on sharing data and materials.


  1. 1.
    Witzgall, R., O’Leary, E., & Bonventre, J. V. (1994). A mammalian expression vector for the expression of GAL4 fusion proteins with an epitope tag and histidine tail. Analytical Biochemistry, 223, 291–298.CrossRefGoogle Scholar
  2. 2.
    Lejard, V., Rebours, E., Meersseman, C., & Rocha, D. (2014). Construction and validation of a novel dual reporter vector for studying mammalian bidirectional promoters. Plasmid, 74, 1–8.CrossRefGoogle Scholar
  3. 3.
    Elmileik, H., Kumagai, T., Berengena, M., Ueda, K., & Sugiyama, M. (2001). Use of bleomycin- and heat shock-induced calreticulin promoter for construction of a mammalian expression vector. Journal of Biochemistry, 129, 671–674.CrossRefGoogle Scholar
  4. 4.
    Roure, A., Rothbacher, U., Robin, F., Kalmar, E., Ferone, G., Lamy, C., et al. (2007). A multicassette gateway vector set for high throughput and comparative analyses in ciona and vertebrate embryos. PLoS One, 2, e916.CrossRefGoogle Scholar
  5. 5.
    Tan, R., Li, C., Jiang, S., & Ma, L. (2006). A novel and simple method for construction of recombinant adenoviruses. Nucleic Acids Research, 34, e89.CrossRefGoogle Scholar
  6. 6.
    Matsumoto, A., & Itoh, T. Q. (2011). Self-assembly cloning: a rapid construction method for recombinant molecules from multiple fragments. BioTechniques, 51, 55–56.CrossRefGoogle Scholar
  7. 7.
    You, L. M., Luo, J., Wang, A. P., Zhang, G. P., Weng, H. B., Guo, Y. N., et al. (2010). A hybrid promoter-containing vector for direct cloning and enhanced expression of PCR-amplified ORFs in mammalian cells. Molecular Biology Reports, 37, 2757–2765.CrossRefGoogle Scholar
  8. 8.
    Sugiyama, H., Niwa, H., Makino, K., & Kakunaga, T. (1988). Strong transcriptional promoter in the 5′ upstream region of the human beta-actin gene. Gene, 65, 135–139.CrossRefGoogle Scholar
  9. 9.
    Wilkinson, G. W., & Akrigg, A. (1992). Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus vector. Nucleic Acids Research, 20, 2233–2239.CrossRefGoogle Scholar
  10. 10.
    Teschendorf, C., Warrington, K. H, Jr, Siemann, D. W., & Muzyczka, N. (2002). Comparison of the EF-1 alpha and the CMV promoter for engineering stable tumor cell lines using recombinant adeno-associated virus. Anticancer Research, 22, 3325–3330.Google Scholar
  11. 11.
    Jianwei, D., Qianqian, Z., Songcai, L., Mingjun, Z., Xiaohui, R., Linlin, H., et al. (2012). The combination of a synthetic promoter and a CMV promoter improves foreign gene expression efficiency in myocytes. Journal of Biotechnology, 158, 91–96.CrossRefGoogle Scholar
  12. 12.
    Cab-Barrera, E. L., & Barrera-Saldana, H. A. (1988). Versatile plasmid vectors for use in studies of eukaryotic gene expression. Gene, 70, 411–413.CrossRefGoogle Scholar
  13. 13.
    Kim, D., Kim, J. D., Baek, K., Yoon, Y., & Yoon, J. (2003). Improved mammalian expression systems by manipulating transcriptional termination regions. Biotechnology Progress, 19, 1620–1622.CrossRefGoogle Scholar
  14. 14.
    Falck-Pedersen, E., Logan, J., Shenk, T., & Darnell, J. E, Jr. (1985). Transcription termination within the E1A gene of adenovirus induced by insertion of the mouse beta-major globin terminator element. Cell, 40, 897–905.CrossRefGoogle Scholar
  15. 15.
    Petitclerc, D., Attal, J., Theron, M. C., Bearzotti, M., Bolifraud, P., Kann, G., et al. (1995). The effect of various introns and transcription terminators on the efficiency of expression vectors in various cultured cell lines and in the mammary gland of transgenic mice. Journal of Biotechnology, 40, 169–178.CrossRefGoogle Scholar
  16. 16.
    Fritze, C. E., & Anderson, T. R. (2000). Epitope tagging: general method for tracking recombinant proteins. Methods in Enzymology, 327, 3–16.CrossRefGoogle Scholar
  17. 17.
    Bell, M. R., Engleka, M. J., Malik, A., & Strickler, J. E. (2013). To fuse or not to fuse: what is your purpose? Protein Science : A Publication of the Protein Society, 22, 1466–1477.CrossRefGoogle Scholar
  18. 18.
    Zhao, X., Li, G., & Liang, S. (2013). Several affinity tags commonly used in chromatographic purification. Journal of Analytical Methods in Chemistry, 2013, 581093.CrossRefGoogle Scholar
  19. 19.
    Naylor, L. H. (1999). Reporter gene technology: the future looks bright. Biochemical Pharmacology, 58, 749–757.CrossRefGoogle Scholar
  20. 20.
    Welsh, D. K., & Kay, S. A. (2005). Bioluminescence imaging in living organisms. Current Opinion in Biotechnology, 16, 73–78.CrossRefGoogle Scholar
  21. 21.
    Prescher, J. A., & Contag, C. H. (2010). Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Current Opinion in Chemical Biology, 14, 80–89.CrossRefGoogle Scholar
  22. 22.
    Jiang, T., Xing, B., & Rao, J. (2008). Recent developments of biological reporter technology for detecting gene expression. Biotechnology and Genetic Engineering Reviews, 25, 41–75.CrossRefGoogle Scholar
  23. 23.
    Qureshi, S. A. (2007). Beta-lactamase: an ideal reporter system for monitoring gene expression in live eukaryotic cells. BioTechniques, 42, 91–96.CrossRefGoogle Scholar
  24. 24.
    Chalfie, M. (1995). Green fluorescent protein. Photochemistry and Photobiology, 62, 651–656.CrossRefGoogle Scholar
  25. 25.
    Chen, S., Zhou, D., Swiderek, K. M., Kadohama, N., Osawa, Y., & Hall, P. F. (1993). Structure-function studies of human aromatase. The Journal of Steroid Biochemistry and Molecular Biology, 44, 347–356.CrossRefGoogle Scholar
  26. 26.
    Grabenhorst, E., Schlenke, P., Pohl, S., Nimtz, M., & Conradt, H. S. (1999). Genetic engineering of recombinant glycoproteins and the glycosylation pathway in mammalian host cells. Glycoconjugate Journal, 16, 81–97.CrossRefGoogle Scholar
  27. 27.
    Safinya, C. R. (2001). Structures of lipid-DNA complexes: supramolecular assembly and gene delivery. Current Opinion in Structural Biology, 11, 440–448.CrossRefGoogle Scholar
  28. 28.
    Li, W., & Szoka, F. C, Jr. (2007). Lipid-based nanoparticles for nucleic acid delivery. Pharmaceutical Research, 24, 438–449.CrossRefGoogle Scholar
  29. 29.
    Gopalakrishnan, B., & Wolff, J. (2009). siRNA and DNA transfer to cultured cells. Methods in Molecular Biology, 480, 31–52.CrossRefGoogle Scholar
  30. 30.
    Prasher, D. C. (1995). Using GFP to see the light. Trends in Genetics, 11, 320–323.CrossRefGoogle Scholar
  31. 31.
    Niwa, H., Yamamura, K., & Miyazaki, J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene, 108, 193–199.CrossRefGoogle Scholar
  32. 32.
    Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., & Nishimune, Y. (1997). ‘Green mice’ as a source of ubiquitous green cells. FEBS Letters, 407, 313–319.CrossRefGoogle Scholar
  33. 33.
    Nakamura, M., Suzuki, A., Hoshida, H., & Akada, R. (2014). Minimum GC-rich sequences for overlap extension PCR and primer annealing. Methods in Molecular Biology, 1116, 165–181.CrossRefGoogle Scholar
  34. 34.
    Fischer, W., Puls, J., Buhrdorf, R., Gebert, B., Odenbreit, S., & Haas, R. (2001). Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Molecular Microbiology, 42, 1337–1348.CrossRefGoogle Scholar
  35. 35.
    Iakhiaeva, E., Hinck, C. S., Hinck, A. P., & Zwieb, C. (2009). Characterization of the SRP68/72 interface of human signal recognition particle by systematic site-directed mutagenesis. Protein Science, 18, 2183–2195.CrossRefGoogle Scholar
  36. 36.
    Burre, J., Sharma, M., & Sudhof, T. C. (2012). Systematic mutagenesis of alpha-synuclein reveals distinct sequence requirements for physiological and pathological activities. The Journal of Neuroscience, 32, 15227–15242.CrossRefGoogle Scholar
  37. 37.
    Seng, K. C., & Seng, C. K. (2008). The success of the genome-wide association approach: a brief story of a long struggle. European Journal of Human Genetics, 16, 554–564.CrossRefGoogle Scholar
  38. 38.
    Hsu, C. Y., & Uludag, H. (2008). Effects of size and topology of DNA molecules on intracellular delivery with non-viral gene carriers. BMC Biotechnology, 8, 23.CrossRefGoogle Scholar
  39. 39.
    Dhanoya, A., Chain, B. M., & Keshavarz-Moore, E. (2011). The impact of DNA topology on polyplex uptake and transfection efficiency in mammalian cells. Journal of Biotechnology, 155, 377–386.CrossRefGoogle Scholar
  40. 40.
    Remaut, K., Sanders, N. N., Fayazpour, F., Demeester, J., & De Smedt, S. C. (2006). Influence of plasmid DNA topology on the transfection properties of DOTAP/DOPE lipoplexes. Journal of Controlled Release, 115, 335–343.CrossRefGoogle Scholar
  41. 41.
    Kamiya, H., Yamazaki, J., & Harashima, H. (2002). Size and topology of exogenous DNA as determinant factors of transgene transcription in mammalian cells. Gene Therapy, 9, 1500–1507.CrossRefGoogle Scholar
  42. 42.
    Weintraub, H., Cheng, P. F., & Conrad, K. (1986). Expression of transfected DNA depends on DNA topology. Cell, 46, 115–122.CrossRefGoogle Scholar
  43. 43.
    Cherng, J. Y., Schuurmans-Nieuwenbroek, N. M., Jiskoot, W., Talsma, H., Zuidam, N. J., Hennink, W. E., & Crommelin, D. J. (1999). Effect of DNA topology on the transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid complexes. Journal of Controlled Release, 60, 343–353.CrossRefGoogle Scholar
  44. 44.
    Shen, H., Hu, Y., & Saltzman, W. M. (2006). DNA diffusion in mucus: effect of size, topology of DNAs, and transfection reagents. Biophysical Journal, 91, 639–644.CrossRefGoogle Scholar
  45. 45.
    Suzuki, H., Fukunishi, Y., Kagawa, I., Saito, R., Oda, H., Endo, T., et al. (2001). Protein–protein interaction panel using mouse full-length cDNAs. Genome Research, 11, 1758–1765.CrossRefGoogle Scholar
  46. 46.
    Hoat, T. X., Bertin, N., Ninomiya, N., Fukuda, S., Usui, K., Kawai, J., et al. (2009). Development of a high-throughput method for the systematic identification of human proteins nuclear translocation potential. BMC Cell Biology, 10, 69.CrossRefGoogle Scholar
  47. 47.
    Xin, W., Zhang, Y. M., Xiao, J. H., & Huang, D. W. (2003). Construction of linear functional expression elements with DNA fragments created by site-specific DNA nickase, N.Bpu10 I, and exonuclease III. Biotechnology Letters, 25, 1913–1916.CrossRefGoogle Scholar
  48. 48.
    Xiao, J. H., Xin, W., Liu, Y. J., Murphy, R. W., & Huang, D. W. (2007). Generation of linear expression constructs by one-step PCR with vaccinia DNA topoisomerase I. Molecular Biotechnology, 35, 15–22.CrossRefGoogle Scholar
  49. 49.
    Sykes, K. F., & Johnston, S. A. (1999). Linear expression elements: a rapid, in vivo, method to screen for gene functions. Nature Biotechnology, 17, 355–359.CrossRefGoogle Scholar
  50. 50.
    Susa, T., Kato, T., & Kato, Y. (2008). Reproducible transfection in the presence of carrier DNA using FuGENE6 and Lipofectamine 2000. Molecular Biology Reports, 35, 313–319.CrossRefGoogle Scholar
  51. 51.
    Pradhan, K., & Gadgil, M. (2012). Effect of addition of ‘carrier’ DNA during transient protein expression in suspension CHO culture. Cytotechnology, 64, 613–622.CrossRefGoogle Scholar
  52. 52.
    Ross, P. C., & Hui, S. W. (1999). Polyethylene glycol enhances lipoplex-cell association and lipofection. Biochimica et Biophysica Acta, 1421, 273–283.CrossRefGoogle Scholar
  53. 53.
    Palmer, L. R., Chen, T., Lam, A. M., Fenske, D. B., Wong, K. F., MacLachlan, I., & Cullis, P. R. (2003). Transfection properties of stabilized plasmid-lipid particles containing cationic PEG lipids. Biochimica et Biophysica Acta, 1611, 204–216.CrossRefGoogle Scholar
  54. 54.
    Kawai, S., & Nishizawa, M. (1984). New procedure for DNA transfection with polycation and dimethyl sulfoxide. Molecular and Cellular Biology, 4, 1172–1174.Google Scholar
  55. 55.
    Schiestl, R. H., & Gietz, R. D. (1989). High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Current Genetics, 16, 339–346.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mikiko Nakamura
    • 1
    • 3
    Email author
  • Ayako Suzuki
    • 2
  • Junko Akada
    • 1
    • 5
  • Tohru Yarimizu
    • 2
  • Ryo Iwakiri
    • 4
  • Hisashi Hoshida
    • 2
    • 3
  • Rinji Akada
    • 2
    • 3
  1. 1.Innovation CenterYamaguchi UniversityUbeJapan
  2. 2.Department of Applied Molecular Bioscience, Graduate School of MedicineYamaguchi UniversityUbeJapan
  3. 3.Yamaguchi University Biomedical Engineering CenterUbeJapan
  4. 4.KOHJIN Life Sciences Co., Ltd.SaikiJapan
  5. 5.Department of Biochemistry and Functional Proteomics, Graduate School of MedicineYamaguchi UniversityUbeJapan

Personalised recommendations