Advertisement

Molecular Biotechnology

, Volume 57, Issue 7, pp 662–674 | Cite as

A Plant-Derived Multi-HIV Antigen Induces Broad Immune Responses in Orally Immunized Mice

  • Néstor Rubio-Infante
  • Dania O. Govea-Alonso
  • Andrea Romero-Maldonado
  • Ana Lilia García-Hernández
  • Damaris Ilhuicatzi-Alvarado
  • Jorge A. Salazar-González
  • Schuyler S. Korban
  • Sergio Rosales-MendozaEmail author
  • Leticia Moreno-FierrosEmail author
Research

Abstract

Multi-HIV, a multiepitopic protein derived from both gp120 and gp41 envelope proteins of the human immunodeficiency virus (HIV), has been proposed as a vaccine prototype capable of inducing broad immune responses, as it carries various B and T cell epitopes from several HIV strains. In this study, the immunogenic properties of a Multi-HIV expressed in tobacco chloroplasts are evaluated in test mice. BALB/c mice orally immunized with tobacco-derived Multi-HIV have elicited antibody responses, including both the V3 loop of gp120 and the ELDKWA epitope of gp41. Based on splenocyte proliferation assays, stimulation with epitopes of the C4, V3 domain of gp120, and the ELDKWA domain of gp41 elicits positive cellular responses. Furthermore, specific interferon gamma production is observed in both CD4+ and CD8+ T cells stimulated with HIV peptides. These results demonstrate that plant-derived Multi-HIV induces T helper-specific responses. Altogether, these findings illustrate the immunogenic potential of plant-derived Multi-HIV in an oral immunization scheme. The potential of this low-cost immunization approach and its implications on HIV/AIDS vaccine development are discussed.

Keywords

Human immunodeficiency virus Multiepitopic vaccine Biofarming Neutralizing antibodies Glycoprotein 120 Glycoprotein 41 

Notes

Acknowledgments

This research was funded by Grants 102109 from CONACYT and 173858 from CIBIOGEM to SRM.

References

  1. 1.
    Schiffner, T., Sattentau, Q. J., & Dorrell, L. (2013). Development of prophylactic vaccines against HIV-1. Retrovirology, 10, 72.CrossRefGoogle Scholar
  2. 2.
    Lu, L., Palaniyandi, S., Zeng, R., Bai, Y., Liu, X., & Wang, Y. (2011). A neonatal Fc receptor-targeted mucosal vaccine strategy effectively induces HIV-1 antigen-specific immunity to genital infection. Journal of Virology, 85, 10542–10553.CrossRefGoogle Scholar
  3. 3.
    Domingo, E., Grande-Pérez, A., & Martín, V. (2008). Future prospects for the treatment of rapidly evolving viral pathogens: insights from evolutionary biology. Expert Opinion on Biological Therapy, 8, 1455–1460.CrossRefGoogle Scholar
  4. 4.
    Ebrahim, O., & Mazanderani, A. H. (2013). Recent developments in HIV treatment and their dissemination in poor countries. Infectious Disease Reports, 5(Suppl 1), e2.CrossRefGoogle Scholar
  5. 5.
    Melnik, S., & Stoger, E. (2013). Green factories for biopharmaceuticals. Current Medicinal Chemistry, 20, 1038–1046.Google Scholar
  6. 6.
    Varona-Santos, J. T., Vazquez-Padrón, R. I., & Moreno-Fierros, L. (2006). Production of a short recombinant C4V3 HIV-1 immunogen that induces strong anti-HIV responses by systemic and mucosal routes without the need of adjuvants. Viral Immunology, 19, 237–249.CrossRefGoogle Scholar
  7. 7.
    Govea-Alonso, D. O., Gómez-Cardona, E. E., Rubio-Infante, N., García-Hernández, A. L., Varona-Santos, J. T., Salgado-Bustamante, M., et al. (2013). Production of an antigenic C4(V3)6 multiepitopic HIV protein in bacterial and plant systems. Plant Cell Tissue Organ Culture, 113, 73–79.CrossRefGoogle Scholar
  8. 8.
    Govea-Alonso, D. O., Rubio-Infante, N., García-Hernández, A. L., Varona-Santos, J. T., Korban, S. S., Moreno-Fierros, L., et al. (2013). Immunogenic properties of a lettuce-derived C4(V3)6 multiepitopic HIV protein. Planta, 238, 785–792.CrossRefGoogle Scholar
  9. 9.
    Rubio-Infante, N., Govea-Alonso, D. O., Alpuche-Solís, Á. G., García-Hernández, A. L., Soria-Guerra, R. E., Paz-Maldonado, L. M., et al. (2012). A chloroplast-derived C4V3 polypeptide from the human immunodeficiency virus (HIV) is orally immunogenic in mice. Plant Molecular Biology, 78, 337–349.CrossRefGoogle Scholar
  10. 10.
    Muster, T., Steindl, F., Purtscher, M., Trkola, A., Klima, A., Himmler, G., et al. (1993). A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. Journal of Virology, 67, 6642–6647.Google Scholar
  11. 11.
    Arnold, G. F., Velasco, P. K., Holmes, A. K., Wrin, T., Geisler, S. C., Phung, P., et al. (2009). Broad neutralization of human immunodeficiency virus type 1 (HIV-1) elicited from human rhinoviruses that display the HIV-1 gp41 ELDKWA epitope. Journal of Virology, 83, 5087–5100.CrossRefGoogle Scholar
  12. 12.
    Matoba, N., Magérus, A., Geyer, B. C., Zhang, Y., Muralidharan, M., Alfsen, A., et al. (2004). A mucosally targeted subunit vaccine candidate eliciting HIV-1 transcytosis-blocking Abs. Proceedings of the National Academy of Sciences of the United States of America, 101, 13584–13589.CrossRefGoogle Scholar
  13. 13.
    Marusic, C., Rizza, P., Lattanzi, L., Mancini, C., Spada, M., Belardelli, F., et al. (2001). Chimeric plant virus particles as immunogens for inducing murine and human immune responses against human immunodeficiency virus type 1. Journal of Virology, 75(18), 8434–8439.CrossRefGoogle Scholar
  14. 14.
    Mascola, J. R., Stiegler, G., VanCott, T. C., Katinger, H., Carpenter, C. B., Hanson, C. E., et al. (2000). Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nature Medicine, 6, 207–210.CrossRefGoogle Scholar
  15. 15.
    Coëffier, E., Clément, J. M., Cussac, V., Khodaei-Boorane, N., Jehanno, M., Rojas, M., et al. (2000). Antigenicity and immunogenicity of the HIV-1 gp41 epitope ELDKWA inserted into permissive sites of the MalE protein. Vaccine, 19, 684–693.CrossRefGoogle Scholar
  16. 16.
    Li, H., Liu, Z. Q., Ding, J., & Chen, Y. H. (2002). Recombinant multi-epitope vaccine induce predefined epitope-specific antibodies against HIV-1. Immunology Letters, 84, 153–157.CrossRefGoogle Scholar
  17. 17.
    Rosales-Mendoza, S., Rubio-Infante, N., Monreal-Escalante, E., Govea-Alonso, D. O., García-Hernández, A. L., Salazar-González, J. A., et al. (2014). Chloroplast expression of an HIV envelop-derived multiepitope protein: towards a multivalent plant-based vaccine. Plant Cell, Tissue and Organ Culture, 116, 111–123.CrossRefGoogle Scholar
  18. 18.
    Patterson, L. J., Robey, F., Muck, A., Van Remoortere, K., Aldrich, K., Richardson, E., et al. (2001). A conformational C4 peptide polymer vaccine coupled with live recombinant vector priming is immunogenic but does not protect against rectal SIV challenge. AIDS Research and Human Retroviruses, 17, 837–849.CrossRefGoogle Scholar
  19. 19.
    Haynes, B. F., Ma, B., Montefiori, D. C., Wrin, T., Petropoulos, C. J., Sutherland, L. L., et al. (2006). Analysis of HIV-1 subtype B third variable region peptide motifs for induction of neutralizing antibodies against HIV-1 primary isolates. Virology, 345, 44–55.CrossRefGoogle Scholar
  20. 20.
    Kent, S. J., Greenberg, P. D., Hoffman, M. C., Akridge, R. E., & McElrath, M. J. (1997). Antagonism of vaccine-induced HIV-1-specific CD4+ T cells by primary HIV-1 infection: potential mechanism of vaccine failure. Journal of Immunology, 158, 807–815.Google Scholar
  21. 21.
    Malhotra, U., Holte, S., Zhu, T., Delpit, E., Huntsberry, C., Sette, A., et al. (2003). Early induction and maintenance of Env-specific T-helper cells following human immunodeficiency virus type 1 infection. Journal of Virology, 77, 2663–2674.CrossRefGoogle Scholar
  22. 22.
    Zwick, M. B., Labrijn, A. F., Wang, M., Spenlehauer, C., Saphire, E. O., Binley, J. M., et al. (2001). Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. Journal of Virology, 75, 10892–10905.CrossRefGoogle Scholar
  23. 23.
    Mehandru, S., Wrin, T., Galovich, J., Stiegler, G., Vcelar, B., Hurley, A., et al. (2004). Neutralization profiles of newly transmitted human immunodeficiency virus type 1 by monoclonal antibodies 2G12, 2F5, and 4E10. Journal of Virology, 78, 14039–14042.CrossRefGoogle Scholar
  24. 24.
    Kelker, H. C., Itri, V. R., & Valentine, F. T. (2010). A strategy for eliciting antibodies against cryptic, conserved, conformationally dependent epitopes of HIV envelope glycoprotein. PLoS ONE, 5, e8555. doi: 10.1371/journal.pone.0008555.CrossRefGoogle Scholar
  25. 25.
    Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J., & Hendrickson, W. A. (1998). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature, 393, 648–659.CrossRefGoogle Scholar
  26. 26.
    Gaudebout, P., Zeliszewski, D., Golvano, J. J., Pignal, C., Le Gac, S., Borras-Cuesta, F., et al. (1997). Binding analysis of 95 HIV gp120 peptides to HLA-DR1101 and -DR0401 evidenced many HLA-class II binding regions on gp120 and suggested several promiscuous regions. Journal of Acquire Immune Deficiency Syndromes and Human Retrovirology, 14, 91–101.CrossRefGoogle Scholar
  27. 27.
    Geretti, A. M., Van Baalen, C. A., Borleffs, J. C., Van Els, C. A., & Osterhaus, A. D. (1994). Kinetics and specificities of the T helper-cell response to gp120 in the asymptomatic stage of HIV-1 infection. Scandinavian Journal of Immunology, 39, 355–362.CrossRefGoogle Scholar
  28. 28.
    Warrier, S. V., Pinter, A., Honnen, W. J., Girard, M., Muchmore, E., & Tilley, S. A. (1994). A novel, glycan-dependent epitope in the V2 domain of human immunodeficiency virus type 1 gp120 is recognized by a highly potent, neutralizing chimpanzee monoclonal antibody. Journal of Virology, 68, 4636–4642.Google Scholar
  29. 29.
    Wahren, B., Rosen, J., Sandström, E., Mathiesen, T., Modrow, S., & Wigzell, H. (1989). HIV-1 peptides induce a proliferative response in lymphocytes from infected persons. Journal of Acquire Immune Deficiency Syndromes, 2, 448–456.Google Scholar
  30. 30.
    Broliden, P. A., von Gegerfelt, A., Clapham, P., Rosen, J., Fenyö, E. M., Wahren, B., & Broliden, K. (1992). Identification of human neutralization-inducing regions of the human immunodeficiency virus type 1 envelope glycoproteins. Proceedings of the National Academy of Sciences of the United States of America, 89, 461–465.CrossRefGoogle Scholar
  31. 31.
    Vanini, S., Longhi, R., Lazzarin, A., Vigo, E., Siccardi, A. G., & Viale, G. (1993). Discrete regions of HIV-1 gp41 defined by syncytia-inhibiting affinity-purified human antibodies. AIDS, 7, 167–174.CrossRefGoogle Scholar
  32. 32.
    Xiao, Y., Zhao, Y., Lu, Y., & Chen, Y. H. (2000). Epitope-vaccine induces high levels of ELDKWA-epitope-specific neutralizing antibody. Immunological Investigations, 1, 41–50.CrossRefGoogle Scholar
  33. 33.
    Rosales-Mendoza, S., Alpuche-Solis, A., Soria-Guerra, R. E., Moreno-Fierros, L., Herrera-Díaz, A., & Korban, S. S. (2009). Expression of an Escherichia coli antigenic fusion protein comprising the heat labile toxin B subunit and the heat stable toxin, and its assembly as a functional oligomer in transplastomic tobacco plants. Plant Journal, 57, 45–54.CrossRefGoogle Scholar
  34. 34.
    Trkola, A., Dragic, T., Arthos, J., Binley, J. M., Olson, W. C., Allaway, G. P., et al. (1996). CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature, 384, 184–187.CrossRefGoogle Scholar
  35. 35.
    Rao, M., Peachman, K. K., Kim, J., Gao, G., Alving, C. R., Michael, N. L., et al. (2013). HIV-1 variable loop 2 and its importance in HIV-1 infection and vaccine development. Current HIV Research, 11, 427–438.CrossRefGoogle Scholar
  36. 36.
    Gottardo, R., Bailer, R. T., Korber, B. T., Gnanakaran, S., Phillips, J., Shen, X., et al. (2013). Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial. PLoS ONE, 8, e75665. doi: 10.1371/journal.pone.0075665.CrossRefGoogle Scholar
  37. 37.
    Gorny, M. K., Pan, R., Williams, C., Wang, X. H., Volsky, B., O’Neal, T., et al. (2012). Functional and immunochemical cross-reactivity of V2-specific monoclonal antibodies from human immunodeficiency virus type 1-infected individuals. Virology, 427, 198–207.CrossRefGoogle Scholar
  38. 38.
    Liao, H. X., Bonsignori, M., Alam, S. M., McLellan, J. S., Tomaras, G. D., Moody, M. A., et al. (2013). Vaccine induction of antibodies against a structurally heterogeneous site of immune pressure within HIV-1 envelope protein variable regions 1 and 2. Immunity, 38, 1–11.CrossRefGoogle Scholar
  39. 39.
    Walker, L. M., Phogat, S. K., Chan-Hui, P. Y., Wagner, D., Phung, P., Goss, J. L., et al. (2009). Broad and potent neutralizing antibodies from an african donor reveal a new HIV-1 vaccine target. Science, 326, 285–289.CrossRefGoogle Scholar
  40. 40.
    Liu, P., Yates, N. L., Shen, X., Bonsignori, M., Moody, M. A., Liao, H. X., et al. (2013). Infectious virion capture by HIV-1 gp120 specific IgG from RV144 vaccinees. Journal of Virology, 87, 7828–7836.CrossRefGoogle Scholar
  41. 41.
    Zolla-Pazner, S., Decamp, A., Gilbert, P. B., Williams, C., Yates, N. L., Williams, W. T., et al. (2014). Vaccine-induced IgG antibodies to V1V2 regions of multiple HIV-1 subtypes correlate with decreased risk of HIV-1 infection. PLoS ONE, 9, e87572.CrossRefGoogle Scholar
  42. 42.
    Sáez-Cirión, A., Lacabaratz, C., Lambotte, O., Versmisse, P., Urrutia, A., Boufassa, F., et al. (2007). HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proceedings of the National Academy of Sciences of the United States of America, 104, 6776–6781.CrossRefGoogle Scholar
  43. 43.
    Chesler, D. A., & Reiss, C. S. (2002). The role of IFN-gamma in immune responses to viral infections of the central nervous system. Cytokine & Growth Factor Reviews, 13(441–54), 11.Google Scholar
  44. 44.
    Neutra, M. R., & Kozlowski, P. A. (2006). Mucosal vaccines: the promise and the challenge. Nature Reviews Immunology, 6, 148–158.CrossRefGoogle Scholar
  45. 45.
    Brossart, P., & Bevan, M. J. (1997). Presentation of exogenous protein antigens on major histocompatibility complex class I molecules by dendritic cells: pathway of presentation and regulation by cytokines. Blood, 90, 1594–1599.Google Scholar
  46. 46.
    Belshe, R. B., Mendelman, P. M., Treanor, J., King, J., Gruber, W. C., & Piedra, P. (1998). The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenzavirus vaccine in children. The New England Journal of Medicine, 338, 1405–1412.CrossRefGoogle Scholar
  47. 47.
    Connor, R. I., Korber, B. T. M., Graham, B. S., Hahn, B. H., Ho, D. D., Walker, B. D., et al. (1998). Immunological and virological analyses of persons infected by human immunodeficiency virus type I while participating in trials of recombinant gp120 subunit vaccines. Journal of Virology, 72, 1552–1576.Google Scholar
  48. 48.
    VanCott, T. C., Mascola, J. R., Loomis-Price, L. D., Sinangil, F., Zitomersky, N., McNeil, J. G., et al. (1999). Cross-subtype neutralizing antibodies induced in baboons by a subtype E GP120 immunogen based on an R5 primary HIV-1 envelope. Journal of Virology, 73, 4640–4650.Google Scholar
  49. 49.
    Wrin, T., Crawford, L., Sawyer, L., Weber, P., Sheppard, H. W., & Hanson, C. V. (1994). Neutralizing antibody responses to autologous and heterologous isolates of human immunodeficiency virus. Journal of Acquire Immune Deficiency Syndromes and Human Retrovirology, 7, 211–219.Google Scholar
  50. 50.
    Liang, X., Munshi, S., Shendure, J., Mark, G., Davies, M. E., Freed, D. C., et al. (1999). Epitope insertion into variable loops of HIV-1 gp120 as a potential means to improve immunogenicity of viral envelope protein. Vaccine, 17, 2862–2872.CrossRefGoogle Scholar
  51. 51.
    Rosales-Mendoza, S., Rubio-Infante, N., Govea-Alonso, D. O., & Moreno-Fierros, L. (2012). Current status and perspectives of plant-based candidate vaccines against the human immunodeficiency virus (HIV). Plant Cell Reports, 31, 495–511.CrossRefGoogle Scholar
  52. 52.
    Youm, J. W., Jeon, J. H., Kim, H., et al. (2008). Transgenic tomatoes expressing human beta-amyloid for use as a vaccine against Alzheimer’s disease. Biotechnology Letters, 30, 1839–1845.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Néstor Rubio-Infante
    • 1
  • Dania O. Govea-Alonso
    • 2
  • Andrea Romero-Maldonado
    • 2
  • Ana Lilia García-Hernández
    • 1
  • Damaris Ilhuicatzi-Alvarado
    • 1
  • Jorge A. Salazar-González
    • 2
  • Schuyler S. Korban
    • 3
  • Sergio Rosales-Mendoza
    • 2
    Email author
  • Leticia Moreno-Fierros
    • 1
    Email author
  1. 1.Inmunidad en Mucosas, UBIMED, FES-IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantlaMexico
  2. 2.Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan LuisMexico
  3. 3.Department of BiologyUniversity of Massachusetts BostonBostonUSA

Personalised recommendations