Skip to main content

Advertisement

Log in

Inclusion of Quality Controls on Leishmaniases Molecular Tests to Increase Diagnostic Accuracy in Research and Reference Laboratories

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Early detection of leishmaniases and prompt institution of treatment are paramount for individuals and communities affected by these diseases. To overcome the remaining limitations inherent to molecular methods currently used and to ensure the accuracy of results in leishmaniases diagnosis, two triplex polymerase chain reaction (PCR) assays with quality controls for the reactions were developed. Validity indicators were assessed in 186 dog blood samples from endemic areas in Brazil. The level of agreement between the new tools and their singleplex protocols was assessed by kappa analysis. The triplex PCR for visceral leishmaniasis showed sensitivity (S) = 78.68 %, specificity (E) = 85.29 %, and efficiency (e) = 81.05 %. The cutaneous leishmaniasis protocol showed S = 97.29 %, E = 79.16 %, and e = 90.16 %. Both protocols showed good agreement with gold standards. These new tools enable, in a single reaction, the diagnosis of the diseases and the evaluation of the sample quality and DNA extraction process, thus reducing the cost of reagents and avoiding the eventual need for collecting a second sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alvar, J., Vélez, I. D., Bern, C., Herrero, M., Desjeux, P., Cano, J., et al. (2012). Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 7, e35671.

    Article  CAS  Google Scholar 

  2. Hotez, P. J., & Brown, A. S. (2009). Neglected tropical disease vaccines. Biologicals, 37, 160–164.

    Article  CAS  Google Scholar 

  3. Hotez, P. J., Molyneux, D. H., Fenwick, A., Kumaresan, J., Ehrlich, S. S., Jeffrey, D., et al. (2007). Control of neglected tropical diseases. New England Journal of Medicine, 357, 1018–1027.

    Article  CAS  Google Scholar 

  4. Chappuis, F., Sundar, S., Hailu, A., Ghalib, H., Rijal, S., Peeling, R. W., et al. (2007). Visceral leishmaniasis: What are the needs for diagnosis, treatment and control? Nature Reviews Microbiology, 5, 873–882.

    Article  CAS  Google Scholar 

  5. Ashford, R. W. (2000). The leishmaniases as emerging and reemerging zoonoses. International Journal for Parasitology, 30, 1269–1281.

    Article  CAS  Google Scholar 

  6. Ikonomopoulos, J., Kokotas, S., Gazouli, M., Zavras, A., Stoitsiou, M., & Gorgoulis, V. G. (2003). Molecular diagnosis of leishmaniosis in dogs: Comparative application of traditional diagnostic methods and the proposed assay on clinical samples. Veterinary Parasitology, 113, 99–113.

    Article  CAS  Google Scholar 

  7. Ndao, M. (2009). Diagnosis of parasitic diseases: Old and new approaches. Interdisciplinary Perspectives on Infectious Diseases. e278246.

  8. Paiva-Cavalcanti, M., Brito, M. E. F., Souza, W. V., Gomes, Y. M., & Abath, F. G. C. (2009). The development of a real-time PCR assay for the quantification of Leishmania infantum in canine blood. Veterinary Journal, 182, 356–358.

    Article  Google Scholar 

  9. Basuni, M. (2011). A pentaplex real-time polymerase chain reaction assay for detection of four species of soil-transmitted helminths. The American Journal of Tropical Medicine and Hygiene, 84, 338–343.

    Article  Google Scholar 

  10. Paiva-Cavalcanti, M., Dantas-Torres, F., Gonçalves-de-Albuquerque, S. C., Morais, R. C. S., Brito, M. E., Otranto, D., & Brandão-Filho, S. P. (2013). Quantitative real time PCR assays for the detection of Leishmania (Viannia) braziliensis in animals and humans. Molecular and Cellular Probes, 27, 122–128.

    Article  Google Scholar 

  11. Rodríguez-Cortés, A. (2010). Leishmania infection: Laboratory diagnosing in the absence of a “gold standard”. The American Journal of Tropical Medicine and Hygiene, 82, 251–256.

    Article  Google Scholar 

  12. Miranda, A., Saldaña, A., González, K., Paz, M., Santamaría, G., Samudio, F., & Calzada, J. E. (2012). Evolution of PCR for cutaneous leishmaniasis diagnosis and species identification using filter paper samples in Panama, Central America. Transactions of the Royal Society of Tropical Medicine and Hygiene, 106, 544–548.

    Article  CAS  Google Scholar 

  13. Gonçalves, S. C., Régis-da-Silva, C. G., Brito, M. E. F. C., Brandão-Filho, S. P., & Paiva-Cavalcanti, M. (2012). Application of the mammalian glyceraldehyde-3-phosphate dehydrogenase gene for sample quality control in multiplex PCR for diagnosis of leishmaniasis. Journal of Venomous Animals and Toxins Including Tropical Diseases, 18, 188–197.

    Article  Google Scholar 

  14. Yang, S., & Rothman, R. E. (2004). PCR-based diagnostics for infectious diseases: Uses, limitations, and future applications in acute-care settings. The Lancet Infectious Diseases, 4, 337–348.

    Article  CAS  Google Scholar 

  15. Sackett, D. L., & Haynes, R. B. (2007). Evidence base of clinical diagnosis: The architecture of diagnostic research. BMJ, 324, 539–541.

    Article  Google Scholar 

  16. Cafarchia, C., Stefania, L. M., Testini, G., Parisi, A., Guillot, J., Gasser, R. B., & Otranto, D. (2007). Molecular characterization of Malassezia isolates from dogs using three distinct genetic markers for nuclear DNA. Molecular and Cellular Probes, 21, 229–238.

    Article  CAS  Google Scholar 

  17. World Organization for Animal Health (OIE). (2010). Principles of validation of diagnostic assays for infectious diseases (pp. 1–18). Paris: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals OIE.

    Google Scholar 

  18. Rosner, B. (2006). Fundamentals of Biostatistics (6th ed.). Boston: Duxbury Press.

    Google Scholar 

  19. Mumy, K. L., & Findlay, R. H. (2004). Convenient determination of DNA extraction efficiency using an external DNA recovery standard and quantitative-competitive PCR. Journal of Microbiological Methods, 57, 259–268.

    Article  CAS  Google Scholar 

  20. Alm, E. W., Zheng, D., & Raskin, L. (2000). The presence of humic substances and DNA in RNA extracts affects hybridization results. Applied and Environmental Microbiology, 66, 4547–4554.

    Article  CAS  Google Scholar 

  21. Elfrino, E. M., Ashshi, A. M., Cooper, R. J., & Klapper, P. E. (2000). Multiplex PCR: Optimization and aplication in diagnostic virology. Clinical Microbiology Reviews, 13, 559–570.

    Article  Google Scholar 

  22. Pandey, K., Pandey, B. D., Mallik, A. K., Acharya, J., Kato, K., Kaneko, O., & Ferreira, P. E. (2014). A new molecular surveillance system for leishmaniasis. The American Journal of Tropical Medicine and Hygiene, 90(6), 1082–1086.

    Article  CAS  Google Scholar 

  23. Polz, M. F., & Cavanaugh, C. M. (1998). Bias in template-to-product ratios in multi-template PCR. Applied Environment Microbiology, 64, 3724–3730.

    CAS  Google Scholar 

  24. Bensoussan, E., Nasereddin, A., Jonas, F., Schnur, L. F., & Jaffe, C. L. (2006). Comparison of PCR assays for diagnosis of cutaneous leishmaniasis. Journal of Clinical Microbiology, 44, 1435–1439.

    Article  CAS  Google Scholar 

  25. Disch, J., Pedras, M. J., Orsini, M., Pirmez, C., Oliveira, M. C., Castro, M., & Rabello, A. (2005). Leishmania (Viannia) subgenus kDNA amplification for the diagnosis of mucosal leishmaniasis. Diagnostic Microbiology and Infectious Disease, 51, 185–190.

    Article  CAS  Google Scholar 

  26. Brujin, M., & Barker, D. C. (1992). Diagnosis of New World leishmaniasis: Specific detection of species of the Leishmania braziliensis complex by amplification of kinetoplast DNA. Acta Tropica, 52, 45–58.

    Article  Google Scholar 

  27. Marcussi, V. M., Marcussi, L. M., Barbosa-Tessmann, I. P., Lonardoni, M. V. C., & Silveira, T. G. V. (2008). Leishmania (Viannia) braziliensis: New primers for identification using polymarese chain reaction. Experimental Parasitology, 120, 300–305.

    Article  CAS  Google Scholar 

  28. Dish, J., Carligiorne, R. B., Marciel, F., Oliveira, M. C., Orsini, M., Dias-Neto, E., & Rabello, A. (2006). Single-step duplex kDNA-PCR for detection of Leishmania donovani complex in human peripheral blood samples. Diagnostic Microbiology and Infectious Disease, 56, 395–400.

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate Claudia Cafarchia´s help by sending the M. pachydermatis material from the Department of Veterinary Medicine, University of Bari, Italy; and Luciana Aguiar Figueredo, Filipe Dantas-Torres, and Domenico Otranto by the scientific opinion. Thanks to the Program of Technological Development in Health Supplies (PDTIS/FIOCRUZ) for allowing us to use its facilities, and to the State of Pernambuco Research Foundation (FACEPE), the National Council for Scientific and Technological Development (CNPq)/PAPES VI and Coordination for the Improvement of Higher Education Personnel (CAPES) for financial support.

Conflicts of interest

The authors declare no conflicts of interest in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena de Paiva-Cavalcanti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da C. Gonçalves-de-Albuquerque, S., Pessoa-e-Silva, R., Trajano-Silva, L.A.M. et al. Inclusion of Quality Controls on Leishmaniases Molecular Tests to Increase Diagnostic Accuracy in Research and Reference Laboratories. Mol Biotechnol 57, 318–324 (2015). https://doi.org/10.1007/s12033-014-9825-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9825-2

Keywords

Navigation