Skip to main content
Log in

In Vitro Encapsulation of Heterologous dsDNA Into Human Parvovirus B19 Virus-Like Particles

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Virus-like particles (VLPs) have vast potential for applications in nanoscience and nanomedicine. These biological nanoparticles may be used for medical imaging, vaccination, or tissue-specific delivery of drugs or other bioactive molecules. VLPs of Human parvovirus B19 (B19 V) can be assembled in vitro from the recombinant VP2 protein. In this research, we describe a simple method for the encapsulation of heterologous linear dsDNA fragments of different sizes into B19 V-VP2 VLPs, in which the DNA and denatured VP2 protein are co-incubated and the assembly process is conducted by one dialysis step. Characterization of the particles by qPCR demonstrated the encapsulation of dsDNA, and indicates that the length of the dsDNA is critical for the encapsulation process. The strategy presented here opens the possibility to use this VLPs as a delivery system with future therapeutically applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao, L., Seth, A., Wibowo, N., Zhao, C. X., Mitter, N., Yu, C., et al. (2014). Nanoparticle vaccines. Vaccine, 32, 327–337.

    Article  Google Scholar 

  2. Wang, Q., Lin, T., Tang, L., Johnson, J. E., & Finn, M. G. (2002). Icosahedral virus particles as addressable nanoscale building blocks. Angewandte Chemie International Edition, 41, 459–462.

    Article  CAS  Google Scholar 

  3. Steinmetz, N. F., & Evans, D. J. (2007). Utilization of plant viruses in bionanotechnology. Organic & Biomolecular Chemistry, 5, 2891–2902.

    Article  CAS  Google Scholar 

  4. Manchester, M., & Singh, P. (2006). Virus-based nanoparticles (VNPs): Platform technologies for diagnostic imaging. Advanced Drug Delivery Reviews, 58, 1505–1522.

    Article  CAS  Google Scholar 

  5. Huang, X., Bronstein, L. M., Retrum, J., Dufort, C., Tsvetkova, I., Aniagyei, S., et al. (2007). Self-assembled virus-like particles with magnetic cores. Nano Letters, 7, 2407–2416.

    Article  CAS  Google Scholar 

  6. Nam, K. T., Kim, D. W., Yoo, P. J., Chiang, C. Y., Meethong, N., Hammond, P. T., et al. (2006). Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science, 312, 885–888.

    Article  CAS  Google Scholar 

  7. Zeltnis, A. (2013). Construction and characterization of virus-like particles: A review. Molecular Biotechnology, 53, 92–107.

    Article  Google Scholar 

  8. Yoo, J. W., Irvine, D. J., Discher, D. E., & Mitragotri, S. (2011). Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nature Reviews Drug Discovery, 10, 521–535.

    Article  CAS  Google Scholar 

  9. Stanley, S. (2014). Biological nanoparticles and their influence on organisms. Current Opinion in Biotechnology, 28, 69–74.

    Article  CAS  Google Scholar 

  10. Pattenden, L. K., Middelberg, A. P., Niebert, M., & Lipin, D. I. (2005). Towards the preparative and large-scale precision manufacture of virus-like particles. Trends in Biotechnology, 23, 523–529.

    Article  CAS  Google Scholar 

  11. Sánchez-Rodríguez, S. P., Münch-Anguiano, L., Echeverría, O. M., Vázquez-Nin, G. H., Mora-Pale, M., Dordick, J. S., et al. (2012). Human parvovirus B19 virus-like particles: In vitro assembly and stability. Biochimie, 94, 870–878.

    Article  Google Scholar 

  12. Agbandje-McKenna, M. & Rossmann, M. G. (1997) The structure of human parvovirus B19. In L. J. Anderson & N. S. Young (Eds.) Monographs in Virology. Human Parvovirus B19 (vol. 20) (pp. 3–15). Basel: Karger.

  13. Kaufmann, B., Simpson, A. A., & Rossmann, M. G. (2004). The structure of human parvovirus B19. Proceedings of the National Academy of Sciences of the United States of America, 101, 11628–11633.

    Article  CAS  Google Scholar 

  14. Lindner, J., & Modrow, S. (2008). Human bocavirus-a novel parvovirus to infect humans. Intervirology, 51, 116–122.

    Article  Google Scholar 

  15. Servant-Delmas, A., Lefrère, J. J., Morinet, F., & Pillet, S. (2010). Advances in human B19 erythrovirus biology. Journal of Virology, 84, 9658–9665.

    Article  CAS  Google Scholar 

  16. Zhi, N., Mills, I. P., Lu, J., Wong, S., Filippone, C., & Brown, K. E. (2006). Molecular and functional analyses of a Human parvovirus B19 infectious clone demonstrates essential roles for NS1, VP1, and the 11-kilodalton protein in virus replication and infectivity. Journal of Virology, 80, 5941–5950.

    Article  CAS  Google Scholar 

  17. Kajigaya, S., Fujii, H., Field, A., Anderson, S., Rosenfeld, S., Anderson, L. J., et al. (1991). Self-assembled B19 parvovirus capsids, produced in a baculovirus system, are antigenically and immunogenically similar to native virions. Proceedings of the National Academy of Sciences of the United States of America, 88, 4646–4650.

    Article  CAS  Google Scholar 

  18. Bustos-Jaimes, I., Mora-Lugo, R., Calcagno, M., & Farrés, A. (2010). Kinetic studies of Gly28: Ser mutant form of Bacillus pumilus lipase: Changes in kcat and thermal dependence. BBA Proteins and Proteomics, 1804, 2222–2227.

    Article  CAS  Google Scholar 

  19. Lefever, S., Hellemans, J., Pattyn, F., Przybylski, D. R., Taylor, C., Geurts, R., et al. (2009). RDML: structured language and reporting guidelines for real-time quantitative PCR data. Nucleic Acids Research, 37, 2065–2069.

    Article  CAS  Google Scholar 

  20. Vaerman, J. L., Sausssoy, P., & Ingargiola, I. (2004). Evaluation of real-time PCR data. Journal of Biological Regulators and Homeostatic Agents, 18, 212–214.

    CAS  Google Scholar 

  21. Adams, P. S. (2006) Data analysis and reporting. In M. T. Dorak (Ed) Real-time PCR (pp. 39–62). New York: Taylor & Francis.

  22. Higuchi, R., Fockler, C., Dollinger, G., & Watson, R. (1993). Kinetic PCR analysis: Real time monitoring of DNA amplification reactions. Biotechnology, 11, 1026–1030.

    Article  CAS  Google Scholar 

  23. Carrillo-Tripp, M., Shepherd, C. M., Borelli, I. A., Venkataraman, S., Lander, G., Natarajan, P., et al. (2009). VIPERdb2: An enhanced and web API enabled relational database for structural virology. Nucleic Acids Research, 37, D436–D442.

    Article  CAS  Google Scholar 

  24. Sánchez-Rodríguez, S. P., Münch-Anguiano, L., & Bustos-Jaimes, I. (2010). Advances in the development of virus-like particles as tools in medicine and nanoscience. Current Chemical Biology, 4, 231–243.

    Google Scholar 

  25. Domingo-Espín, J., Unzueta, U., Saccardo, P., Rodríguez-Carmona, E., Corchero, J. L., Vázquez, E., et al. (2011). Engineered biological entities for drug delivery and gene therapy: Protein nanoparticles. Prog. Mol. Biol. Transl. Sci., 104, 247–298.

    Article  Google Scholar 

  26. Bronstein, L. M. (2011). Virus-based nanoparticles with inorganic cargo: What does the future hold? Small (Weinheim an der Bergstrasse, Germany), 7, 1609–1618.

    Article  CAS  Google Scholar 

  27. Gilbert, L., Toivola, J., White, D., Ihalainen, T., Smith, W., Lindholm, L., et al. (2005). Molecular and structural characterization of fluorescent human parvovirus B19 virus-like particles. Biochemical and Biophysical Research Communications, 331, 527–535.

    Article  CAS  Google Scholar 

  28. Kaufmann, B., Chipman, P. R., Kostyuchenko, V. A., Modrow, S., & Rossmann, M. G. (2008). Visualization of the externalized VP2 N termini of infectious human parvovirus B19. Journal of Virology, 82, 7306–7312.

    Article  CAS  Google Scholar 

  29. Brown, C. S., Welling-Wester, S., Feijlbrief, M., Van Lent, J. W. M., & Spaan, W. J. M. (1994). Chimeric Parvovirus B19 capsids for the presentation of foreign epitopes. Virology, 198, 477–488.

    Article  CAS  Google Scholar 

  30. Amexis, G., & Young, N. S. (2006). Parvovirus B19 empty capsids as antigen carriers for presentation of antigenic determinants of Dengue 2 virus. Journal of Infectious Diseases, 194, 790–794.

    Article  CAS  Google Scholar 

  31. Ogasawara, Y., Amexis, G., Yamaguchi, H., Kajigaya, S., Leppla, S. H., & Young, N. S. (2006). Recombinant viral-like particles of parvovirus B19 as antigen carriers of anthrax protective antigen. In Vivo, 20, 319–324.

    CAS  Google Scholar 

  32. Ros, C., Baltzer, C., Mani, B., & Kempf, C. (2006). Parvovirus uncoating in vitro reveals a mechanism of DNA release without capsid disassembly and striking differences in encapsidated DNA stability. Virology, 345, 137–147.

    Article  CAS  Google Scholar 

  33. Cotmore, S. F., Hafenstein, S., & Tattersall, P. (2010). Depletion of virion associated divalent cations induces parvovirus minute virus of mice to eject its genome in a 3′-to-5′ direction from an otherwise intact viral particle. Journal of Virology, 84, 1945–1956.

    Article  CAS  Google Scholar 

  34. Bönsch, C., Zuercher, C., Lieby, P., Kempf, C., & Ros, C. (2010). The globoside receptor triggers structural changes in the B19 virus capsid that facilitate virus internalization. Journal of Virology, 84, 11737–11746.

    Article  Google Scholar 

  35. Aposhian, H. V., Thayer, R. E., & Qasba, P. K. (1975). Formation of nucleoprotein complexes between Polyoma empty capsids and DNA. Journal of Virology, 15, 645–653.

    CAS  Google Scholar 

  36. Barr, S. M., Keck, K., & Aposhian, H. V. (1979). Cell-free assembly of a polyoma-like particle from empty capsids and DNA. Virology, 96, 656–659.

    Article  CAS  Google Scholar 

  37. Krauzewicz, N., Stokrová, J., Jenkins, C., Elliott, M., Higgins, C. F., & Griffin, B. E. (2000). Virus-like gene transfer into cells mediated by polyoma virus pseudocapsids. Gene Therapy, 7, 2122–2131.

    Article  CAS  Google Scholar 

  38. Stokrová, J., Palková, Z., Fischer, L., Richterová, Z., Korb, J., Griffin, B. E., et al. (1999). Interactions of heterologous DNA with polyomavirus major structural protein, VP1. FEBS Letters, 445, 119–125.

    Article  Google Scholar 

  39. Tibbetts, C., & Giam, C. Z. (1979). In vitro association of empty adenovirus capsids with double-stranded DNA. Journal of Virology, 32, 995–1005.

    CAS  Google Scholar 

  40. Goldmann, C., Stolte, N., Nisslein, T., Hunsmann, G., Lüke, W., & Petry, H. (2000). Packaging of small molecules into VP1-virus-like particles of the human polyomavirus JC virus. Journal of Virological Methods, 90, 85–90.

    Article  CAS  Google Scholar 

  41. Bartel, D. P. (2009). MicroRNA target recognition and regulatory functions. Cell, 136, 215–233.

    Article  CAS  Google Scholar 

  42. Grijalvo, S., Aviñó, A., & Eritja, R. (2014). Oligonucleotide delivery: A patent review (2010–2013). Expert Opinion on Therapeutic Patents, 24, 801–819.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Consejo Nacional de Ciencia y Tecnología (CONACyT), México (Grant CB-2010-01-151189) and Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT), UNAM (Grant IN215613). The authors acknowledge technical support of Laura Álvarez-Añorve.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Bustos-Jaimes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Rodríguez, S.P., Enrriquez-Avila, J.V., Soto-Fajardo, J.M. et al. In Vitro Encapsulation of Heterologous dsDNA Into Human Parvovirus B19 Virus-Like Particles. Mol Biotechnol 57, 309–317 (2015). https://doi.org/10.1007/s12033-014-9823-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9823-4

Keywords

Navigation