Efficient Differentiation of Human Embryonic Stem Cells Toward Dopaminergic Neurons Using Recombinant LMX1A Factor


Direct differentiation of dopaminergic (DA) neurons from human pluripotent stem cells (hPSCs) in the absence of gene manipulation is the most desired alternative to clinical treatment of Parkinson disease. Protein transduction-based methods could be efficient, safe approaches to enhance direct differentiation of human embryonic stem cells (hESCs) to DA neurons. In the present study, we compared the differentiation efficiency of DA neurons from hESCs with and without the application of LIM homeobox transcription factor 1 alpha (LMX1A), a master regulatory protein in the development of the midbrain neurons and SHH proteins. The results obtained revealed that the treatment of hESCs with recombinant LMX1A (rLMX1A) protein along with dual SMAD inhibition led to higher expression of LMX1B, LMX1A, FOXA2, PITX3, EN1, and WNT1 effector endogenous genes and two-fold expression of PITX3. Moreover, the highest expression level of PITX3 and TH was observed when rLMX1A was added to the induction medium supplemented with SHH. To our best knowledge, this is the first report demonstrating the application of TAT-LMX1A recombinant protein to enhance hESC differentiation to DA as shown by the expression of DA specific makers. These findings pave the way for enhancing the differentiation of hESCs to DA neurons safely and efficiently without genetic modification.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Change history

  • 03 November 2018

    The original version of this article was published without article note. The article note is given below.



Dopaminergic neuron


Human embryonic stem cell


Parkinson disease


Trans-activator of transcription


  1. 1.

    Cho, M. S., Lee, Y. E., Kim, J. Y., Chung, S., Cho, Y. H., Kim, D. S., et al. (2008). Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 3392–3397.

    CAS  Article  Google Scholar 

  2. 2.

    Fasano, C. A., Chambers, S. M., Lee, G., Tomishima, M. J., & Studer, L. (2010). Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell, 6, 336–347.

    CAS  Article  Google Scholar 

  3. 3.

    Lee, H. S., Bae, E. J., Yi, S. H., Shim, J. W., Jo, A. Y., Kang, J. S., et al. (2010). Foxa2 and Nurr1 synergistically yield A9 nigral dopamine neurons exhibiting improved differentiation, function, and cell survival. Stem Cells, 28, 501–512.

    CAS  Google Scholar 

  4. 4.

    Ganat, Y. M., Calder, E. L., Kriks, S., Nelander, J., Tu, E. Y., Jia, F., et al. (2012). Identification of embryonic stem cell-derived midbrain dopaminergic neurons for engraftment. Clinical Investigation, 122, 2928–2939.

    CAS  Article  Google Scholar 

  5. 5.

    Kriks, S., Shim, J.-W., Piao, J., Ganat, Y. M., Wakeman, D. R., Xie, Z., et al. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 480, 547–551.

    CAS  Google Scholar 

  6. 6.

    Kirkeby, A., Grealish, S., Wolf, D. A., Nelander, J., Wood, J., & Lundblad, M. (2012). Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Reports, 1, 703–714.

    CAS  Article  Google Scholar 

  7. 7.

    Hegarty, S. V., Sullivan, A. M., & O’Keeffe, G. W. (2013). Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Developmental Biology, 379, 123–138.

    CAS  Article  Google Scholar 

  8. 8.

    Studer, L. (2012). Derivation of dopaminergic neurons from pluripotent stem cells. Progress in Brain Research, 200, 243–263.

    Article  Google Scholar 

  9. 9.

    Gump, J. M., & Dowdy, S. F. (2007). Tat transduction: the molecular mechanism and therapeutic prospects. Trends in Molecular Medicine, 13, 443–448.

    CAS  Article  Google Scholar 

  10. 10.

    Dietz, G. P., & Bahr, M. (2007). Synthesis of cell-penetrating peptides and their application in neurobiology. Methods in Molecular Biology, 399, 181–198.

    CAS  Article  Google Scholar 

  11. 11.

    Dietz, G. P., & Bahr, M. (2004). Delivery of bioactive molecules into the cell: the Trojan horse approach. Molecular and Cellular Neurosciences, 27, 85–131.

    CAS  Article  Google Scholar 

  12. 12.

    Andersson, E., Tryggvason, U., Deng, Q., Friling, S., Alekseenko, Z., Robert, B., et al. (2006). Identification of intrinsic determinants of midbrain dopamine neurons. Cell, 124, 393–405.

    CAS  Article  Google Scholar 

  13. 13.

    Ono, Y., Nakatani, T., Sakamoto, Y., Mizuhara, E., Minaki, Y., Kumai, M., et al. (2007). Differences in neurogenic potential in floor plate cells along an anteroposterior location: Midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development, 134, 3213–3225.

    CAS  Article  Google Scholar 

  14. 14.

    Chung, S., Kim, C. H., & Kim, K. S. (2012). Lmx1a regulates dopamine transporter gene expression during ES cell differentiation and mouse embryonic development. Journal of Neurochemistry, 122, 244–250.

    CAS  Article  Google Scholar 

  15. 15.

    Ang, S. L. (2006). Transcriptional control of midbrain dopaminergic neuron development. Development, 133, 3499–3506.

    CAS  Article  Google Scholar 

  16. 16.

    Friling, S., Andersson, E., Thompson, L. H., Jonsson, M. E., Hebsgaard, J. B., Nanou, E., et al. (2009). Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 7613–7618.

    CAS  Article  Google Scholar 

  17. 17.

    Sanchez-Danes, A., Consiglio, A., Richaud, Y., Rodriguez-Piza, I., Dehay, B., Edel, M., et al. (2012). Efficient generation of A9 midbrain dopaminergic neurons by lentiviral delivery of Lmx1a in human embryonic stem cells and induced pluripotent stem cells. Human Gene Therapy, 23, 56–69.

    CAS  Article  Google Scholar 

  18. 18.

    Pfisterer, U., Kirkeby, A., Torper, O., Wood, J., Nelander, J., Dufour, A., et al. (2011). Direct conversion of human fibroblasts to dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 108, 10343–10348.

    CAS  Article  Google Scholar 

  19. 19.

    Caiazzo, M., Dell’Anno, M. T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., et al. (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 476, 224–227.

    CAS  Article  Google Scholar 

  20. 20.

    Wadia, J. S., & Dowdy, S. F. (2002). Protein transduction technology. Current Opinion in Biotechnology, 13, 52–56.

    CAS  Article  Google Scholar 

  21. 21.

    Kwon, Y. D., Oh, S. K., Kim, H. S., Ku, S. Y., Kim, S. H., Choi, Y. M., et al. (2005). Cellular manipulation of human embryonic stem cells by TAT-PDX1 protein transduction. Molecular Therapy: The Journal of The American Society of Gene Therapy, 12, 28–32.

    CAS  Article  Google Scholar 

  22. 22.

    Noda, T., Kawamura, R., Funabashi, H., Mie, M., & Kobatake, E. (2006). Transduction of Neurod2 protein induced neural cell differentiation. Journal of Biotechnology, 126, 230–236.

    CAS  Article  Google Scholar 

  23. 23.

    Stock, K., Nolden, L., Edenhofer, F., Quandel, T., & Brustle, O. (2010). Transcription factor-based modulation of neural stem cell differentiation using direct protein transduction. Cellular and Molecular Life Sciences, 67, 2439–2449.

    CAS  Article  Google Scholar 

  24. 24.

    Fonoudi, H., Yeganeh, M., Fattahi, F., Ghazizadeh, Z., Rassouli, H., Alikhani, M., et al. (2013). ISL1 protein transduction promotes cardiomyocyte differentiation from human embryonic stem cells. PloS One, 8, e55577.

    CAS  Article  Google Scholar 

  25. 25.

    Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 472–476.

    CAS  Article  Google Scholar 

  26. 26.

    Bosnali, M., & Edenhofer, F. (2008). Generation of transducible versions of transcription factors Oct4 and Sox2. Biological Chemistry, 389, 851–861.

    CAS  Article  Google Scholar 

  27. 27.

    Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384.

    CAS  Article  Google Scholar 

  28. 28.

    Cho, H. J., Lee, C. S., Kwon, Y. W., Paek, J. S., Lee, S. H., Hur, J., et al. (2010). Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood, 116, 386–395.

    CAS  Article  Google Scholar 

  29. 29.

    Zhang, H., Ma, Y., Gu, J., Liao, B., Li, J., Wong, J., et al. (2012). Reprogramming of somatic cells via TAT-mediated protein transduction of recombinant factors. Biomaterials, 33, 5047–5055.

    CAS  Article  Google Scholar 

  30. 30.

    Nemes, C., Varga, E., Polgar, Z., Klincumhom, N., Pirity, M. K., & Dinnyes, A. (2013). Generation of mouse induced pluripotent stem cells by protein transduction. Tissue Engineering Part C: Methods., 20, 383–392.

    Article  Google Scholar 

  31. 31.

    Chung, S., Leung, A., Han, B. S., Chang, M. Y., Moon, J. I., Kim, C. H., et al. (2009). Wnt1-lmx1a forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH-Foxa2 pathway. Cell Stem Cell, 5, 646–658.

    CAS  Article  Google Scholar 

  32. 32.

    Kirkeby, A., Grealish, S., Wolf, D. A., Nelander, J., Wood, J., Lundblad, M., et al. (2012). Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Reports, 1, 703–714.

    CAS  Article  Google Scholar 

  33. 33.

    Gale, E., & Li, M. (2008). Midbrain dopaminergic neuron fate specification: Of mice and embryonic stem cells. Molecular Brain, 1, 8.

    Article  Google Scholar 

  34. 34.

    Doeppner, T. R., Dietz, G. P., El Aanbouri, M., Gerber, J., Witte, O. W., Bahr, M., et al. (2009). TAT-Bcl-x(L) improves survival of neuronal precursor cells in the lesioned striatum after focal cerebral ischemia. Neurobiology of Disease, 34, 87–94.

    CAS  Article  Google Scholar 

  35. 35.

    Baharvand, H., Ashtiani, S. K., Valojerdi, M. R., Shahverdi, A., Taee, A., & Sabour, D. (2004). Establishment and in vitro differentiation of a new embryonic stem cell line from human blastocyst. Differentiation, 72, 224–229.

    Article  Google Scholar 

  36. 36.

    Rassouli, H., Tabe Bordbar, M. S., Rezaei Larijani, M., Pakzad, M., Baharvand, H., & Salekdeh, G. H. (2013). Cloning, expression and functional characterization of in-house prepared human basic fibroblast growth factor. Cell Journal, 14, 282–291.

    CAS  Google Scholar 

Download references


This study was funded through the grants provided by Royan Institute (#90000499). We are grateful to the members of the Department of Stem Cells and Developmental Biology, Royan Institure, for their critical comments.

Conflict of interest

The authors declare they have no competing financial interests.

Author information



Corresponding authors

Correspondence to Ghassem Hosseini Salekdeh or Hossein Baharvand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 453 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fathi, A., Rasouli, H., Yeganeh, M. et al. Efficient Differentiation of Human Embryonic Stem Cells Toward Dopaminergic Neurons Using Recombinant LMX1A Factor. Mol Biotechnol 57, 184–194 (2015). https://doi.org/10.1007/s12033-014-9814-5

Download citation


  • Dopaminergic neuron
  • Differentiation
  • Protein transduction
  • LMX1A