Skip to main content

Advertisement

Log in

Expression of a Novel Chimeric-Truncated tPA in Pichia pastoris with Improved Biochemical Properties

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Thrombolytic therapy by plasminogen activators (PAs) has been a main goal in the treatment of acute myocardial infarction. Despite improved outcomes of currently available thrombolytic therapies, all these agents have different drawbacks that may result in less than optimal outcomes. In order to make tissue plasminogen activator (tPA) more potent, while being more resistant to plasminogen activator inhibitor-1 (PAI-1) and having a higher affinity to fibrin, a new chimeric-truncated form of tPA (CT tPA) was designed and expressed in Pichia pastoris. This novel variant consists of a finger domain of Desmoteplase, an epidermal growth factor (EGF) domain, a kringle 1 (K1) domain, a kringle 2 (K2) domain, in which the lysine binding site (LBS) was deleted, and a protease domain, where the four amino acids lysine 296, arginine 298, arginine 299, and arginine 304 were substituted by aspartic acid. The chimera CT tPA showed 14-fold increase in its activity in the presence of fibrin compared to the absence of fibrin. Furthermore, CT tPA showed about 10-fold more potency than commercially available full-length tPA (Actylase®) and provided 1.2-fold greater affinity to fibrin. A residual activity of only 68 % was observed after incubation of Actylase® with PAI-1, however, 91 % activity remained for CT tPA. These promising findings suggest that the novel CT tPA variant might be an acceptable PA with superior characteristics and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Suarez, J. I. (2006). Acute myocardial infarction, ischemic stroke, sympathetic stress, and inflammation: Birds of a feather. Stroke, 37(10), 2449–2450.

    Article  Google Scholar 

  2. Boersma, E., et al. (2003). Acute myocardial infarction. Lancet, 361(9360), 847–858.

    Article  Google Scholar 

  3. Beaglehole, R., Saracci, R., & Panico, S. (2001). Cardiovascular diseases: Causes, surveillance and prevention. International Journal of Epidemiology, 30(Suppl 1), S1–S4.

    Article  Google Scholar 

  4. Baruah, D. B., et al. (2006). Plasminogen activators: A comparison. Vascular Pharmacology, 44(1), 1–9.

    Article  CAS  Google Scholar 

  5. Nordt, T. K., & Bode, C. (2003). Thrombolysis: Newer thrombolytic agents and their role in clinical medicine. Heart, 89(11), 1358–1362.

    Article  CAS  Google Scholar 

  6. Jiao, J., Yu, M., & Ru, B. (2001). Characterization of a recombinant chimeric plasminogen activator with enhanced fibrin binding. Biochimica et Biophysica Acta, 1546(2), 399–405.

    Article  CAS  Google Scholar 

  7. Liu, Y., et al. (2009). Construction of Pichia pastoris strain expressing salivary plasminogen activator from vampire bat (Desmodus rotundus). Sheng Wu Gong Cheng Xue Bao, 25(4), 566–574.

    CAS  Google Scholar 

  8. Liberatore, G. T., et al. (2003). Vampire bat salivary plasminogen activator (desmoteplase): A unique fibrinolytic enzyme that does not promote neurodegeneration. Stroke, 34(2), 537–543.

    Article  CAS  Google Scholar 

  9. Patel, R., Ispoglou, S., & Apostolakis, S. (2014). Desmoteplase as a potential treatment for cerebral ischaemia. Expert Opinion on Investigational Drugs, 23(6), 865–873.

    Article  CAS  Google Scholar 

  10. Piechowski-Jozwiak, B., & Bogousslavsky, J. (2013). The use of desmoteplase (bat saliva) in the treatment of ischaemia. Expert Opinion on Biological Therapy, 13(3), 447–453.

    Article  CAS  Google Scholar 

  11. Paciaroni, M., Medeiros, E., & Bogousslavsky, J. (2009). Desmoteplase. Expert Opinion on Biological Therapy, 9(6), 773–778.

    Article  CAS  Google Scholar 

  12. Majidzadeh, A. K., et al. (2010). Human tissue plasminogen activator expression in Escherichia coli using cytoplasmic and periplasmic cumulative power. Avicenna Journal of Medical Biotechnology, 2(3), 131–136.

    Google Scholar 

  13. Macauley-Patrick, S., et al. (2005). Heterologous protein production using the Pichia pastoris expression system. Yeast, 22(4), 249–270.

    Article  CAS  Google Scholar 

  14. Cregg, J. M., et al. (2000). Recombinant protein expression in Pichia pastoris. Molecular Biotechnology, 16(1), 23–52.

    Article  CAS  Google Scholar 

  15. Maccani, A., et al. (2014). Pichia pastoris secretes recombinant proteins less efficiently than Chinese hamster ovary cells but allows higher space-time yields for less complex proteins. Biotechnology Journal, 9(4), 526–537.

    Article  CAS  Google Scholar 

  16. Felber, M., Pichler, H., & Ruth, C. (2014). Strains and molecular tools for recombinant protein production in Pichia pastoris. Methods in Molecular Biology, 1152, 87–111.

    Article  Google Scholar 

  17. Mutch, N. J., et al. (2010). Polyphosphate modifies the fibrin network and down-regulates fibrinolysis by attenuating binding of tPA and plasminogen to fibrin. Blood, 115(19), 3980–3988.

    Article  CAS  Google Scholar 

  18. Nieuwenhuizen, W. (2001). Fibrin-mediated plasminogen activation. Annals of the New York Academy of Sciences, 936, 237–246.

    Article  CAS  Google Scholar 

  19. Hamilton, B. S., Brede, Y., & Tolbert, T. J. (2008). Expression and characterization of human glycosylated interleukin-1 receptor antagonist in Pichia pastoris. Protein Expression and Purification, 59(1), 64–68.

    Article  CAS  Google Scholar 

  20. Guo, Y., et al. (2012). Purification and characterization of human IL-10/Fc fusion protein expressed in Pichia pastoris. Protein Expression and Purification, 83(2), 152–156.

    Article  CAS  Google Scholar 

  21. Ku, H. K., et al. (2013). Interpretation of protein quantitation using the Bradford assay: comparison with two calculation models. Analytical Biochemistry, 434(1), 178–180.

    Article  CAS  Google Scholar 

  22. Sadeghi, H. M., et al. (2012). Optimization of the expression of reteplase in Escherichia coli. Research in Pharmaceutical Sciences, 6(2), 87–92.

    Google Scholar 

  23. Nesheim, M., Fredenburgh, J. C., & Larsen, G. R. (1990). The dissociation constants and stoichiometries of the interactions of Lys-plasminogen and chloromethyl ketone derivatives of tissue plasminogen activator and the variant delta FEIX with intact fibrin. Journal of Biological Chemistry, 265(35), 21541–21548.

    CAS  Google Scholar 

  24. van Zonneveld, A. J., Veerman, H., & Pannekoek, H. (1986). On the interaction of the finger and the kringle-2 domain of tissue-type plasminogen activator with fibrin. Inhibition of kringle-2 binding to fibrin by epsilon-amino caproic acid. Journal of Biological Chemistry, 261(30), 14214–14218.

    Google Scholar 

  25. Davami, F., et al. (2011). A novel variant of t-PA resistant to plasminogen activator inhibitor-1; expression in CHO cells based on in silico experiments. BMB Reports, 44(1), 34–39.

    Article  CAS  Google Scholar 

  26. Mahboudi, F., et al. (2013). A fed-batch based cultivation mode in Escherichia coli results in improved specific activity of a novel chimeric-truncated form of tissue plasminogen activator. Journal of Applied Microbiology, 114(2), 364–372.

    Article  CAS  Google Scholar 

  27. George, D. J. G. (1989). Purified type I and type II t-PA. US Patent WO 89/09820.

  28. Levine, G. N., Ali, M. N., & Schafer, A. I. (2001). Antithrombotic therapy in patients with acute coronary syndromes. Archives of Internal Medicine, 161(7), 937–948.

    Article  CAS  Google Scholar 

  29. Dempfle, C. E., & Hennerici, M. G. (2011). Fibrinolytic treatment of acute ischemic stroke for patients on new oral anticoagulant drugs. Cerebrovascular Diseases, 32(6), 616–619.

    Article  Google Scholar 

  30. Melandri, G., et al. (2009). Review of tenecteplase (TNKase) in the treatment of acute myocardial infarction. Vascular Health Risk and Management, 5(1), 249–256.

    Article  CAS  Google Scholar 

  31. Millan, M., Dorado, L., & Davalos, A. (2010). Fibrinolytic therapy in acute stroke. Current Cardiology Reviews, 6(3), 218–226.

    Article  CAS  Google Scholar 

  32. Bringmann, P., et al. (1995). Structural features mediating fibrin selectivity of vampire bat plasminogen activators. Journal of Biological Chemistry, 270(43), 25596–25603.

    Article  CAS  Google Scholar 

  33. Madison, E. L., et al. (1990). Amino acid residues that affect interaction of tissue-type plasminogen activator with plasminogen activator inhibitor 1. Proceedings of the National Academy Science of the United States of America, 87(9), 3530–3533.

    Article  CAS  Google Scholar 

  34. Furlan, A. J., et al. (2006). Dose escalation of desmoteplase for acute ischemic stroke (DEDAS): Evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke, 37(5), 1227–1231.

    Article  CAS  Google Scholar 

  35. Wurm, F. M. (2004). Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology, 22(11), 1393–1398.

    Article  CAS  Google Scholar 

  36. Walsh, G. (2006). Biopharmaceutical benchmarks 2006. Nature Biotechnology, 24(7), 769–776.

    Article  CAS  Google Scholar 

  37. Krainer, F. W., et al. (2013). Knockout of an endogenous mannosyltransferase increases the homogeneity of glycoproteins produced in Pichia pastoris. Scientific Reports, 3, 3279.

    Article  Google Scholar 

  38. Nagaoka, M. R., Kouyoumdjian, M., & Borges, D. R. (2003). Hepatic clearance of tissue-type plasminogen activator and plasma kallikrein in experimental liver fibrosis. Liver International, 23(6), 476–483.

    Article  CAS  Google Scholar 

  39. Rouf, S. A., Moo-Young, M., & Chisti, Y. (1996). Tissue-type plasminogen activator: characteristics, applications and production technology. Biotechnology Advances, 14(3), 239–266.

    Article  CAS  Google Scholar 

  40. Jalanko, A., et al. (1990). Production of human tissue-type plasminogen activator in different mammalian cell lines using an Epstein–Barr virus vector. Journal of Biotechnology, 15(1–2), 155–168.

    Article  CAS  Google Scholar 

  41. Soleimani, M., et al. (2007). Expression of human tissue plasminogen activator in the trypanosomatid protozoan Leishmania tarentolae. Biotechnology and Applied Biochemistry, 48(Pt 1), 55–61.

    CAS  Google Scholar 

  42. Hua, Z. C., et al. (1994). Synthesis and expression of a gene from kringle-2 domain of tissue plasminogen activator in E. coli. Science in China Series B, 37(6), 667–676.

    CAS  Google Scholar 

  43. Weaver, W. D. (1996). The role of thrombolytic drugs in the management of myocardial infarction. Comparative clinical trials. European Heart Journal, 17(Suppl F), 9–15.

    Google Scholar 

  44. Davami, F., et al. (2010). Expression of a novel chimeric truncated t-PA in CHO cells based on in silico experiments. Journal of Biomedicine and Biotechnology, 2010, 108159.

    Article  Google Scholar 

  45. Liu, Z., et al. (2012). Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 109(5), 1259–1268.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are deeply indebted to Dr. Oliver Spadiut (Vienna University of technology, Austria) for his insightful comments. This article is based on part of PhD dissertation and was fully supported by Pasteur Institute of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereidoun Mahboudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadatirad, A., Sardari, S., Kazemali, M. et al. Expression of a Novel Chimeric-Truncated tPA in Pichia pastoris with Improved Biochemical Properties. Mol Biotechnol 56, 1143–1150 (2014). https://doi.org/10.1007/s12033-014-9794-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9794-5

Keywords

Navigation