Skip to main content

Advertisement

Log in

Production of a Plant-Derived Immunogenic Protein Targeting ApoB100 and CETP: Toward a Plant-Based Atherosclerosis Vaccine

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In an effort to initiate the development of a plant-based vaccination model against atherosclerosis, a cholera toxin B subunit (CTB)-based chimeric protein was designed to target both ApoB100 and CETP epitopes associated with immunotherapeutic effects in atherosclerosis. Epitopes were fused at the C-terminus of CTB to yield a protein called CTB:p210:CETPe. A synthetic gene coding for CTB:p210:CETPe was successfully transferred to tobacco plants with no phenotypic alterations. Plant-derived CTB:p210:CETPe was expressed and assembled in the pentameric form. This protein retained the target antigenic determinants, as revealed by GM1-ELISA and Western blot analyses. Higher expresser lines reached recombinant protein accumulation levels up to 10 µg/g fresh weight in leaf tissues and these lines carry a single insertion of the transgene as determined by qPCR. Moreover, when subcutaneously administered, the biomass from these CTB:p210:CETPe-producing plants was able to elicit humoral responses in mice against both ApoB100 and CETP epitopes and human serum proteins. These findings evidenced for the first time that atherosclerosis-related epitopes can be expressed in plants retaining immunogenicity, which opens a new path in the molecular farming field for the development of vaccines against atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tabas, I., Williams, K. J., & Boren, J. (2007). Subendothelial lipoprotein retention as the initiating process in atherosclerosis: Update and therapeutic implications. Circulation, 116, 1832–1844.

    Article  CAS  Google Scholar 

  2. Hartvigsen, K., Chou, M. Y., Hansen, L. F., Shaw, P. X., Tsimikas, S., Binder, C. J., et al. (2009). The role of innate immunity in atherogenesis. Journal of Lipid Research, 50(Suppl.), S388–S393.

    Google Scholar 

  3. Feig, J. E., Shamir, R., & Fisher, E. A. (2008). Atheroprotective effects of HDL: Beyond reverse cholesterol transport. Current Drug Targets, 9, 196–203.

    Article  CAS  Google Scholar 

  4. Perreault, S., Blais, L., Lamarre, D., Dragomir, A., Berbiche, D., Lalonde, L., et al. (2005). Persistence and determinants of statin therapy among middle-aged patients for primary and secondary prevention. British Journal of Clinical Pharmacology, 59, 564–573.

    Article  CAS  Google Scholar 

  5. Bates, T. R., Connaughton, V. M., & Watts, G. F. (2009). Non-adherence to statin therapy: A major challenge for preventive cardiology. Expert Opinion on Pharmacotherapy, 10, 2973–2985.

    Article  CAS  Google Scholar 

  6. Fredrikson, G. N., Andersson, L., Söderberg, I., Dimayuga, P., Chyu, K. Y., Shah, P. K., et al. (2005). Atheroprotective immunization with MDA-modified apo B-100 peptide sequences is associated with activation of Th2 specific antibody expression. Autoimmunity, 38, 171–179.

    Article  CAS  Google Scholar 

  7. Schiopu, A., Bengtsson, J., Söderberg, I., Janciauskiene, S., Lindgren, S., Ares, M. P., et al. (2004). Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation, 110, 2047–2052.

    Article  CAS  Google Scholar 

  8. Klingenberg, R., Lebens, M., Hermansson, A., Fredrikson, G. N., Strodthoff, D., Rudling, M., et al. (2010). Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 946–952.

    Article  CAS  Google Scholar 

  9. Chyu, K. Y., Zhao, X., Dimayuga, P. C., Zhou, J., Li, X., Yano, J., et al. (2012). CD8+ T cells mediate the athero-protective effect of immunization with an ApoB-100 peptide. PLoS ONE, 7, 1–12.

    Article  Google Scholar 

  10. Rittershaus, C. W., Miller, D. P., Thomas, L. J., Picard, M. D., Honan, C. M., Emmett, C. D., et al. (2000). Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 2106–2112.

    Article  CAS  Google Scholar 

  11. Davidson, M. H., Maki, K., Umporowicz, D., Wheeler, A., Rittershaus, C., & Ryan, U. (2003). The safety and immunogenicity of a CETP vaccine in healthy adults. Atherosclerosis, 169, 113–120.

    Article  CAS  Google Scholar 

  12. Thomas, L., Hammond, R., Forsberg, E., Geoghegan-Barek, K., Karalius, B., Marsh, H., et al. (2009). Co-administration of a CpG adjuvant (VaxImmuneTM, CPG 7909) with CETP vaccines increased immunogenicity in rabbits and mice. Human Vaccines, 5, 79–84.

    Article  CAS  Google Scholar 

  13. Gaofu, Q., Jun, L., Xiuyun, Z., Wentao, L., Jie, W., & Jingjing, L. (2005). Antibody against cholesteryl ester transfer protein (CETP) elicited by a recombinant chimeric enzyme vaccine attenuated atherosclerosis in a rabbit model. Life Sciences, 77, 2690–2702.

    Article  Google Scholar 

  14. Barter, P. J., Hopkins, G. J., & Calvert, G. D. (1982). Transfers and exchanges of esterified cholesterol between plasma lipoproteins. Biochemical Journal, 208, 1–7.

    CAS  Google Scholar 

  15. von Eckardstein, A., Nofer, J. R., & Assmann, G. (2001). HDL and coronary heart disease: Role of cholesterol efflux and reverse cholesterol transport. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 13–27.

    Article  Google Scholar 

  16. Curtis, R. I., & Cardineau, C. A. (1990). Oral immunization by transgenic plants. World Patent Application. WO 90/02484.

  17. Yusibov, V., Streatfield, S. J., & Kushnir, N. (2011). Clinical development of plant-produced recombinant pharmaceuticals. Vaccines, antibodies and beyond. Human Vaccines, 7, 313–321.

    Article  CAS  Google Scholar 

  18. Mason, H. S., & Herbst-Kralovetz, M. M. (2012). Plant-derived antigens as mucosal vaccines. Current Topics in Microbiology and Immunology, 354, 101–120.

    CAS  Google Scholar 

  19. Santi, L., Batchelor, L., Huang, Z., Hjelm, B., Kilbourne, J., Arntzen, C. J., et al. (2008). An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine, 26, 1846–1854.

    Article  CAS  Google Scholar 

  20. Lawson, L. B., Norton, E. B., & Clements, J. D. (2011). Defending the mucosa: Adjuvant and carrier formulations for mucosal immunity. Current Opinion in Immunology, 23, 414–420.

    Article  CAS  Google Scholar 

  21. Salazar-González, J. A., & Rosales-Mendoza, S. (2013). A perspective for atherosclerosis vaccination: Is there a place for plant-based vaccines? Vaccine, 31, 1364–1369.

    Article  Google Scholar 

  22. Cangelosi, G. A., Best, E. A., Martinetti, G., & Nester, E. W. (1991). Genetic analysis of Agrobacterium. Methods in Enzymology, 204, 384–397.

    Article  CAS  Google Scholar 

  23. Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G., & Fraley, R. T. (1985). A simple and general method for transferring genes into plants. Science, 227, 1229–1231.

    Article  CAS  Google Scholar 

  24. Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1, 19–21.

    Article  CAS  Google Scholar 

  25. Weng, H., Pan, A., Yang, L., Zhang, C., Liu, Z., & Zhang, D. (2004). Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay with HMG I/Y as an endogenous reference gene. Plant Molecular Biology Reporter, 22, 289–300.

    Article  CAS  Google Scholar 

  26. Chikwamba, R., Cunnick, J., Hathaway, D., McMurray, J., Mason, H., & Wang, K. (2002). A functional antigen in a practical crop: Maize synthesized LT-B protects mice against Escherichia coli heat labile enterotoxin (LT) and cholera toxin (CT). Transgenic Research, 11, 479–493.

    Article  CAS  Google Scholar 

  27. Gaofu, Q., Jingjing, L., Shengying, W., Shanshan, X., Peng, D., Qingye, Z., et al. (2011). A chimeric peptide of intestinal trefoil factor containing cholesteryl ester transfer protein B cell epitope significantly inhibits atherosclerosis in rabbits after oral administration. Peptides, 32, 790–796.

    Article  Google Scholar 

  28. Ruhlman, T., Ahangari, R., Devine, A., Samsam, M., & Daniell, H. (2007). Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts—oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnology Journal, 5, 495–510.

    Article  CAS  Google Scholar 

  29. Youm, J. W., Jeon, J. H., Kim, H., Kim, Y. H., Ko, K., Joung, H., et al. (2008). Transgenic tomatoes expressing human beta-amyloid for use as a vaccine against Alzheimer’s disease. Biotechnology Letters, 30, 1839–1845.

    Article  CAS  Google Scholar 

  30. McCormick, A. A., Reddy, S., Reinl, S. J., Cameron, T. I., Czerwinkski, D. K., Vojdani, F., et al. (2008). Plant-produced idiotype vaccines for the treatment of non-Hodgkin’s lymphoma: Safety and immunogenicity in a phase I clinical study. Proceedings of the National Academy of Sciences of the United States of America, 105, 10131–10136.

    Article  CAS  Google Scholar 

  31. Kim, T. G., Gruber, A., & Langridge, W. H. (2004). HIV-1 gp120 V3 cholera toxin B subunit fusion gene expression in transgenic potato. Protein Expression and Purification, 37, 196–202.

    Article  Google Scholar 

  32. Lee, J. Y., Yu, J., Henderson, D., & Langridge, W. H. (2004). Plant-synthesized E. coli CFA/I fimbrial protein protects Caco-2 cells from bacterial attachment. Vaccine, 23, 222–231.

    Article  CAS  Google Scholar 

  33. Sharma, M. K., Singh, N. K., Jani, D., Sisodia, R., Thungapathra, M., Gautam, J. K., et al. (2008). Expression of toxin co-regulated pilus subunit A (TCPA) of Vibrio cholerae and its immunogenic epitopes fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum). Plant Cell Reports, 27, 307–318.

    Article  CAS  Google Scholar 

  34. Li, D., O’Leary, J., Huang, Y., Huner, N. P., Jevnikar, A. M., & Ma, S. (2006). Expression of cholera toxin B subunit and the B chain of human insulin as a fusion protein in transgenic tobacco plants. Plant Cell Reports, 25, 417–424.

    Article  Google Scholar 

  35. Greco, R., Michel, M., Guetard, D., Cervantes-Gonzalez, M., Pelucchi, N., Wain-Hobson, S., et al. (2007). Production of recombinant HIV-1/HBV virus-like particles in Nicotiana tabacum and Arabidopsis thaliana plants for a bivalent plant-based vaccine. Vaccine, 25, 8228–8240.

    Article  CAS  Google Scholar 

  36. Rigano, M. M., Dreitz, S., Kipnis, A. P., Izzo, A. A., & Walmsley, A. M. (2006). Oral immunogenicity of a plant-made, subunit, tuberculosis vaccine. Vaccine, 24, 691–695.

    Article  CAS  Google Scholar 

  37. Kim, S. I., Veena, J. H., & Gelvin, S. B. (2007). Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant Journal, 51, 779–791.

    Article  CAS  Google Scholar 

  38. Tse, K., Gonen, A., Sidney, J., Ouyang, H., Witztum, J. L., Sette, A., et al. (2013). Atheroprotective vaccination with MHC-II restricted peptides from ApoB-100. Frontiers in Immunology, 4, 493.

    Article  Google Scholar 

  39. Baldwin, I. T. (1988). Damaged-induced alkaloids in tobacco: Pot-bound plants are not inducible. Journal of Chemical Ecology, 4, 1113–1120.

    Article  Google Scholar 

Download references

Acknowledgments

Projects from the group were funded by Grants from CONACYT (102109/56980), PROMEP-2010 to Bioprocess CA. Omar González corrected the English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rosales-Mendoza.

Additional information

Jorge Alberto Salazar-Gonzalez and Sergio Rosales-Mendoza have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar-Gonzalez, J.A., Rosales-Mendoza, S., Romero-Maldonado, A. et al. Production of a Plant-Derived Immunogenic Protein Targeting ApoB100 and CETP: Toward a Plant-Based Atherosclerosis Vaccine. Mol Biotechnol 56, 1133–1142 (2014). https://doi.org/10.1007/s12033-014-9793-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9793-6

Keywords

Navigation