Skip to main content
Log in

RNA-Binding Proteins Associated Molecular Mechanisms of Motor Neuron Degeneration Pathogenesis

  • Reviews
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Motor neuron diseases are neurodegenerative disorders that trigger motor neurons to degenerate and lead to paralysis. Our understanding on the mechanisms of motor neuron degeneration has been enhanced by recent cellular and molecular researches. In this review, I highlight advances in RNA-binding proteins associated molecular mechanisms of motor neuron degeneration pathogenesis including ribonucleoprotein-associated motor neuron degeneration which is focused on RNA-binding protein aggregation associated aberrant RNA metabolism and stress granules mediated translational repression, neurofilament associated aggregate formation, and prion protein associated accumulation of misfolded proteins. Progress overviewed above will be valuable to the development of more targeted diagnostic tests and therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ibrahim, F., Nakaya, T., & Mourelatos, Z. (2012). RNA dysregulation in diseases of motor neurons. Annual Review of Pathology: Mechanism, 7, 323–352.

    Article  CAS  Google Scholar 

  2. Pandya, R. S., Zhu, H. N., Li, W., Bowser, R., Friedlander, R. M., & Wang, X. (2013). Therapeutic neuroprotective agents for amyotrophic lateral sclerosis. Cellular and Molecular Life Sciences, 70, 4729–4745.

    Article  CAS  Google Scholar 

  3. Liu, Q., Xie, F., Siedlak, S. L., Nunomura, A., Honda, K., Moreira, P. I., et al. (2004). Neurofilament proteins in neurodegenerative diseases. Cellular and Molecular Life Science, 61, 3057–3075.

    Article  CAS  Google Scholar 

  4. Teuling, E., Ahmed, S., Haasdijk, E., Demmers, J., Steinmetz, M. O., Akhmanova, A., et al. (2007). Motor neuron disease-associated mutant vesicle-associated membrane protein-associated protein (VAP) B recruits wild-type VAPs into endoplasmic reticulum-derived tubular aggregates. Journal of Neuroscience, 27, 9801–9815.

    Article  CAS  Google Scholar 

  5. Carmeliet, P., & de Almodovar, C. R. (2013). VEGF ligands and receptors: Implications in neurodevelopment and neurodegeneration. Cellular and Molecular Life Science, 70, 1763–1778.

    Article  CAS  Google Scholar 

  6. Nizzardo, M., Simone, C., Falcone, M., Riboldi, G., Rizzo, F., Magri, F., et al. (2012). Research advances in gene therapy approaches for the treatment of amyotrophic lateral sclerosis. Cellular and Molecular Life Science, 69, 1641–1650.

    Article  CAS  Google Scholar 

  7. Morrison, B. E., Majdzadeh, N., & D’Mello, S. R. (2007). Histone deacetylases: Focus on the nervous system. Cellular and Molecular Life Science, 64, 2258–2269.

    Article  CAS  Google Scholar 

  8. Valori, C. F., Brambilla, L., Martorana, F., & Rossi, D. (2014). The multifaceted role of glial cells in amyotrophic lateral sclerosis. Cellular and Molecular Life Science, 71, 287–297.

    Article  CAS  Google Scholar 

  9. Miller, C. C. J., Ackerley, S., Brownlees, J., Grierson, A. J., Jacobsen, N. J. O., & Thornhill, P. (2002). Axonal transport of neurofilaments in normal and disease states. Cellular and Molecular Life Science, 59, 323–330.

    Article  CAS  Google Scholar 

  10. Philips, A. V., & Cooper, T. A. (2000). RNA processing and human disease. Cellular and Molecular Life Science, 57, 235–249.

    Article  CAS  Google Scholar 

  11. Ravindranath, R. M. H., Ravindranath, M. H., & Graves, M. C. (1997). Augmentation of natural antiganglioside IgM antibodies in lower motor neuron disease (LMND) and role of CD5+ B cells. Cellular and Molecular Life Science, 53, 750–758.

    Article  CAS  Google Scholar 

  12. Souii, A., Ben M’hadheb-Gharbi, M., & Gharbi, J. (2013). Role of RNA structure motifs in IRES-dependent translation initiation of the coxsackievirus B3: New insights for developing live-attenuated strains for vaccines and gene therapy. Molecular Biotechnology, 55, 179–202.

    Article  CAS  Google Scholar 

  13. Al-Fageeh, M. B., & Smales, C. M. (2013). Alternative promoters regulate cold inducible RNA-binding (CIRP) gene expression and enhance transgene expression in mammalian cells. Molecular Biotechnology, 54, 238–249.

    Article  CAS  Google Scholar 

  14. Baumann, M., Pontiller, J., & Ernst, W. (2010). Structure and basal transcription complex of RNA polymerase II core promoters in the mammalian genome: An overview. Molecular Biotechnology, 45, 241–247.

    Article  CAS  Google Scholar 

  15. Buratti, E., Romano, M., & Baralle, F. E. (2013). TDP-43 high throughput screening analyses in neurodegeneration: Advantages and pitfalls. Molecular and Cellular Neuroscience, 56, 465–474.

    Article  CAS  Google Scholar 

  16. Musunuru, K. (2003). Cell-specific RNA-binding proteins in human disease. Trends in Cardiovascular Medicine, 13, 188–195.

    Article  CAS  Google Scholar 

  17. Shi, J., Wang, Q., Johansson, J. U., Liang, X., Woodling, N. S., Priyam, P., et al. (2012). Inflammatory prostaglandin E2 signaling in a mouse model of Alzheimer disease. Annals of Neurology, 72, 788–798.

    Article  CAS  Google Scholar 

  18. Zhang, T., Hwang, H. Y., Hao, H., Talbot, C, Jr, & Wang, J. (2012). Caenorhabditis elegans RNA-processing protein TDP-1 regulates protein homeostasis and life span. The Journal of Biological Chemistry, 287, 8371–8382.

    Article  CAS  Google Scholar 

  19. Ghazi-Noori, S., Froud, K. E., Mizielinska, S., Powell, C., Smidak, M., Fernandez de Marco, M., et al. (2012). Progressive neuronal inclusion formation and axonal degeneration in CHMP2B mutant transgenic mice. Brain: A Journal of Neurology, 135, 819–832.

    Article  Google Scholar 

  20. Lopez de Maturana, R., Aguila, J. C., Sousa, A., Vazquez, N., Del Rio, P., Aiastui, A., et al. (2014). Leucine-rich repeat kinase 2 modulates cyclooxygenase 2 and the inflammatory response in idiopathic and genetic Parkinson’s disease. Neurobiology of Aging, 35, 1116–1124.

    Article  CAS  Google Scholar 

  21. Blokhuis, A. M., Groen, E. J. N., Koppers, M., van den Berg, L. H., & Pasterkamp, R. J. (2013). Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathologia, 125, 777–794.

    Article  CAS  Google Scholar 

  22. Van Damme, P., & Robberecht, W. (2009). Recent advances in motor neuron disease. Current Opinion in Neurology, 22, 486–492.

    Article  Google Scholar 

  23. Neumann, M., Igaz, L. M., Kwong, L. K., Nakashima-Yasuda, H., Kolb, S. J., Dreyfuss, G., et al. (2007). Absence of heterogeneous nuclear ribonucleoproteins and survival motor neuron protein in TDP-43 positive inclusions in frontotemporal lobar degeneration. Acta Neuropathologia, 113, 543–548.

    Article  CAS  Google Scholar 

  24. Budini, M., Baralle, F. E., & Buratti, E. (2011). Regulation of gene expression by TDP-43 and FUS/TLS in frontotemporal lobar degeneration. Current Alzheimer Research, 8, 237–245.

    Article  CAS  Google Scholar 

  25. Fiesel, F. C., & Kahle, P. J. (2011). TDP-43 and FUS/TLS: Cellular functions and implications for neurodegeneration. FEBS Journal, 278, 3550–3568.

    Article  CAS  Google Scholar 

  26. Baloh, R. H. (2011). TDP-43: The relationship between protein aggregation and neurodegeneration in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. FEBS Journal, 278, 3539–3549.

    Article  CAS  Google Scholar 

  27. Ule, J. (2008). Ribonucleoprotein complexes in neurologic diseases. Current Opinion in Neurobiology, 18, 516–523.

    Article  CAS  Google Scholar 

  28. Bentmann, E., Haass, C., & Dormann, D. (2013). Stress granules in neurodegeneration: Lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS Journal, 280, 4348–4370.

    Article  CAS  Google Scholar 

  29. Luong, K. V. Q., & Nguyen, L. T. H. (2013). Roles of vitamin D in amyotrophic lateral sclerosis: Possible genetic and cellular signaling mechanisms. Molecular Brain, 6, 16.

    Article  CAS  Google Scholar 

  30. Burman, J. L., Bourbonniere, L., Philie, J., Stroh, T., Dejgaard, S. Y., Presley, J. F., et al. (2008). Scyl1, mutated in a recessive form of spinocerebellar neurodegeneration, regulates COPI-mediated retrograde traffic. Journal of Biological Chemistry, 283, 22774–22786.

    Article  CAS  Google Scholar 

  31. Oh, Y. K., Shin, K. S., Yuan, J. Y., & Kang, S. J. (2008). Superoxide dismutase 1 mutants related to amyotrophic lateral sclerosis induce endoplasmic stress in neuro2a cells. Journal of Neurochemistry, 104, 993–1005.

    Article  CAS  Google Scholar 

  32. Romano, M., & Buratti, E. (2013). Targeting RNA binding proteins involved in neurodegeneration. Journal of Biomolecular Screen, 18, 967–983.

    Article  Google Scholar 

  33. Lee, E. B., Lee, V. M. Y., & Trojanowski, J. Q. (2012). Gains or losses: Molecular mechanisms of TDP43-mediated neurodegeneration. Nature Review Neuroscience, 13, 38–50.

    CAS  Google Scholar 

  34. Dewey, C. M., Cenik, B., Sephton, C. F., Johnson, B. A., Herz, J., & Yu, G. (2012). TDP-43 aggregation in neurodegeneration: Are stress granules the key? Brain Research, 1462, 16–25.

    Article  CAS  Google Scholar 

  35. Polymenidou, M., & Cleveland, D. W. (2011). The seeds of neurodegeneration: Prion-like spreading in ALS. Cell, 147, 498–508.

    Article  CAS  Google Scholar 

  36. Strong, M. J. (2010). The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS). Journal of Neurological Science, 288, 1–12.

    Article  CAS  Google Scholar 

  37. Lanson, N. A., & Pandey, U. B. (2012). FUS-related proteinopathies: Lessons from animal models. Brain Research, 1462, 44–60.

    Article  CAS  Google Scholar 

  38. Miyazaki, K., Yamashita, T., Morimoto, N., Sato, K., Mimoto, T., Kurata, T., et al. (2013). Early and selective reduction of NOP56 (Asidan) and RNA processing proteins in the motor neuron of ALS model mice. Neurological Research, 35, 744–754.

    Article  CAS  Google Scholar 

  39. Volkening, K., Leystra-Lantz, C., Yang, W. C., Jaffee, H., & Strong, M. J. (2009). Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Research, 1305, 168–182.

    Article  CAS  Google Scholar 

  40. Fujita, K., Ito, H., Nakano, S., Kinoshita, Y., Wate, R., & Kusaka, H. (2008). Immunohistochemical identification of messenger RNA-related proteins in basophilic inclusions of adult-onset atypical motor neuron disease. Acta Neuropathologia, 116, 439–445.

    Article  CAS  Google Scholar 

  41. Elliott, J. L., & Snider, W. D. (1995). Parvalbumin is a marker of Als-resistant motor-neurons. NeuroReport, 6, 449–452.

    Article  CAS  Google Scholar 

  42. Szaro, B. G., & Strong, M. J. (2010). Post-transcriptional control of neurofilaments: New roles in development, regeneration and neurodegenerative disease. Trends in Neuroscience, 33, 27–37.

    Article  CAS  Google Scholar 

  43. Kim, H. J., Kim, N. C., Wang, Y. D., Scarborough, E. A., Moore, J., Diaz, Z., et al. (2013). Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature, 495, 467–472.

    Article  CAS  Google Scholar 

  44. Kanekura, K., Nishimoto, I., Aiso, S., & Matsuoka, M. (2006). Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8). Journal of Biological Chemistry, 281, 30223–30233.

    Article  CAS  Google Scholar 

  45. Blokhuis, A. M., Groen, E. J., Koppers, M., van den Berg, L. H., & Pasterkamp, R. J. (2013). Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathologica, 125, 777–794.

    Article  CAS  Google Scholar 

  46. Ayers, J. I., Kincaid, A. E., & Bartz, J. C. (2009). Prion strain targeting independent of strain-specific neuronal tropism. Journal of Virology, 83, 81–87.

    Article  CAS  Google Scholar 

  47. Worrall, B. B., Rowland, L. P., Chin, S. S., & Mastrianni, J. A. (2000). Amyotrophy in prion diseases. Archives of Neurology, 57, 33–38.

    Article  CAS  Google Scholar 

  48. Talbot, K. (2014). Amyotrophic lateral sclerosis: Cell vulnerability or system vulnerability? Journal of Anatomy, 224, 45–51.

    Article  CAS  Google Scholar 

  49. Grad, L.I., & Cashman, N.R. (2014). Prion-like activity of Cu/Zn superoxide dismutase: Implications for amyotrophic lateral sclerosis. Prion, 8.

  50. Kishimoto, Y., Hirono, M., Atarashi, R., Sakaguchi, S., Yoshioka, T., Katamine, S., et al. (2013). Age-dependent impairment of eyeblink conditioning in prion protein-deficient mice. PLoS One, 8, e60627.

    Article  CAS  Google Scholar 

  51. King, O. D., Gitler, A. D., & Shorter, J. (2012). The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Research, 1462, 61–80.

    Article  CAS  Google Scholar 

  52. Senatore, A., Colleoni, S., Verderio, C., Restelli, E., Morini, R., Condliffe, S. B., et al. (2012). Mutant PrP suppresses glutamatergic neurotransmission in cerebellar granule neurons by impairing membrane delivery of VGCC alpha(2)delta-1 subunit. Neuron, 74, 300–313.

    Article  CAS  Google Scholar 

  53. Gitler, A. D., & Shorter, J. (2011). RNA-binding proteins with prion-like domains in ALS and FTLD-U. Prion, 5, 179–187.

    Article  CAS  Google Scholar 

  54. Festoff, B. M., D’Andrea, M. R., Citron, B. A., Salcedo, R. M., Smirnova, I. V., & Andrade-Gordon, P. (2000). Motor neuron cell death in wobbler mutant mice follows overexpression of the G-protein-coupled, protease-activated receptor for thrombin. Molecular Medicine, 6, 410–429.

    CAS  Google Scholar 

  55. Jokic, N., Ling, Y. Y., Ward, R. E., Michael-Titus, A. T., Priestley, J. V., & Malaspina, A. (2007). Retinoid receptors in chronic degeneration of the spinal cord: Observations in a rat model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 103, 1821–1833.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Y. Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, A.Y. RNA-Binding Proteins Associated Molecular Mechanisms of Motor Neuron Degeneration Pathogenesis. Mol Biotechnol 56, 779–786 (2014). https://doi.org/10.1007/s12033-014-9785-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9785-6

Keywords

Navigation