Molecular Biotechnology

, Volume 56, Issue 11, pp 992–1003 | Cite as

Strep-tag II and Twin-Strep Based Cassettes for Protein Tagging by Homologous Recombination and Characterization of Endogenous Macromolecular Assemblies in Saccharomyces cerevisiae

  • Jay Rai
  • J. Kalyani Pemmasani
  • Andriy Voronovsky
  • Ida S. Jensen
  • Arulmani Manavalan
  • Jens R. Nyengaard
  • Monika M. Golas
  • Bjoern Sander


Peptide sequences fused to a gene of interest facilitate the isolation of proteins or protein complexes from cell extracts. In the case of fluorescent protein tags, the tagged protein can be visually localized in living cells. To tag endogenous genes, PCR-based homologous recombination is a powerful approach used in the yeast Saccharomyces cerevisiae. This approach uses short, homologous DNA sequences that flank the tagging cassette to direct recombination. Here, we constructed a set of plasmids, whose sequences were optimized for codon usage in yeast, for Strep-tag II and Twin-Strep tagging in S. cerevisiae. Some plasmids also contain sequences encoding for a fluorescent protein followed by the purification tag. We demonstrate using the yeast pyruvate dehydrogenase (PDH) complex that these plasmids can be used to purify large protein complexes efficiently. We furthermore demonstrate that purification from the endogenous pool using the Strep-tag system results in functionally active complexes. Finally, using the fluorescent tags, we show that a kinase and a phosphatase involved in regulating the activity of the PDH complex localize in the cells’ mitochondria. In conclusion, our cassettes can be used as tools for biochemical, functional, and structural analyses of endogenous multi-protein assemblies in yeast.


Strep-tag II Fluorescent protein tags Pyruvate dehydrogenase complex Single-particle electron microscopy Kinase Phosphatase 



This work has been supported by the Danish Council for Independent Research, the Danish Center for Scientific Computing (DCSC), the Lundbeck Foundation, the Agnes og Poul Friis Foundation, and the Fru Astrid Thaysens Foundation to MMG and BS. ISJ is supported by a fellowship of the Graduate School of Health, Aarhus University. The Centre for Stochastic Geometry and Advanced Bioimaging is supported by the Villum Foundation.

Supplementary material

12033_2014_9778_MOESM1_ESM.pdf (590 kb)
Supplementary material 1 (PDF 590 kb)


  1. 1.
    Malhotra, A. (2009). Tagging for protein expression. Methods in Enzymology, 463, 239–258.CrossRefGoogle Scholar
  2. 2.
    Crivat, G., & Taraska, J. W. (2012). Imaging proteins inside cells with fluorescent tags. Trends in Biotechnology, 30, 8–16.CrossRefGoogle Scholar
  3. 3.
    Kimple, M. E., & Sondek, J. (2004). Overview of affinity tags for protein purification. Current Protocols in Protein Science, Chapter 9, Unit 9.9. doi: 10.1002/0471140864.ps0909s36.
  4. 4.
    Terpe, K. (2003). Overview of tag protein fusions: From molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 60, 523–533.CrossRefGoogle Scholar
  5. 5.
    Hopp, T. P., Prickett, K. S., Price, V. L., Libby, R. T., March, C. J., Cerretti, D. P., et al. (1988). A short polypeptide marker sequence useful for recombinant protein identification and purification. Nature Biotechnology, 6, 1204–1210.CrossRefGoogle Scholar
  6. 6.
    Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., & Seraphin, B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology, 17, 1030–1032.CrossRefGoogle Scholar
  7. 7.
    Schmidt, T. G., & Skerra, A. (2007). The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nature Protocols, 2, 1528–1535.CrossRefGoogle Scholar
  8. 8.
    Einhauer, A., & Jungbauer, A. (2001). The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. Journal of Biochemical and Biophysical Methods, 49, 455–465.CrossRefGoogle Scholar
  9. 9.
    Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., et al. (2001). The tandem affinity purification (TAP) method: A general procedure of protein complex purification. Methods, 24, 218–229.CrossRefGoogle Scholar
  10. 10.
    Oeffinger, M., Wei, K. E., Rogers, R., DeGrasse, J. A., Chait, B. T., Aitchison, J. D., et al. (2007). Comprehensive analysis of diverse ribonucleoprotein complexes. Nature Methods, 4, 951–956.CrossRefGoogle Scholar
  11. 11.
    Schmidt, T. G., & Skerra, A. (1993). The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Engineering, 6, 109–122.CrossRefGoogle Scholar
  12. 12.
    Schmidt, T. G., Koepke, J., Frank, R., & Skerra, A. (1996). Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. Journal of Molecular Biology, 255, 753–766.CrossRefGoogle Scholar
  13. 13.
    Junttila, M. R., Saarinen, S., Schmidt, T., Kast, J., & Westermarck, J. (2005). Single-step Strep-tag purification for the isolation and identification of protein complexes from mammalian cells. Proteomics, 5, 1199–1203.CrossRefGoogle Scholar
  14. 14.
    Voss, S., & Skerra, A. (1997). Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Engineering, 10, 975–982.CrossRefGoogle Scholar
  15. 15.
    Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., et al. (2002). A monomeric red fluorescent protein. Proceedings of the National Academy of Sciences USA, 99, 7877–7882.CrossRefGoogle Scholar
  16. 16.
    Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., & Tsien, R. Y. (2001). Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. Journal of Biological Chemistry, 276, 29188–29194.CrossRefGoogle Scholar
  17. 17.
    Zhang, G., Gurtu, V., & Kain, S. R. (1996). An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochemical and Biophysical Research Communications, 227, 707–711.CrossRefGoogle Scholar
  18. 18.
    Giepmans, B. N., Adams, S. R., Ellisman, M. H., & Tsien, R. Y. (2006). The fluorescent toolbox for assessing protein location and function. Science, 312, 217–224.CrossRefGoogle Scholar
  19. 19.
    Schmidt, T. G., Batz, L., Bonet, L., Carl, U., Holzapfel, G., Kiem, K., et al. (2013). Development of the Twin-Strep-tag® and its application for purification of recombinant proteins from cell culture supernatants. Protein Expression and Purification, 92, 54–61.CrossRefGoogle Scholar
  20. 20.
    Berchtold, M. W., & Villalobo, A. (2014). The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochimica et Biophysica Acta, 1843, 398–435.CrossRefGoogle Scholar
  21. 21.
    Segal, D. J., & Meckler, J. F. (2013). Genome engineering at the dawn of the golden age. Annual Review of Genomics and Human Genetics, 14, 135–158.CrossRefGoogle Scholar
  22. 22.
    Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., & Cullin, C. (1993). A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Research, 21, 3329–3330.CrossRefGoogle Scholar
  23. 23.
    Gavin, A. C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., et al. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415, 141–147.CrossRefGoogle Scholar
  24. 24.
    Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., et al. (2003). Global analysis of protein expression in yeast. Nature, 425, 737–741.CrossRefGoogle Scholar
  25. 25.
    Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., et al. (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440, 637–643.CrossRefGoogle Scholar
  26. 26.
    Janke, C., Magiera, M. M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., et al. (2004). A versatile toolbox for PCR-based tagging of yeast genes: New fluorescent proteins, more markers and promoter substitution cassettes. Yeast, 21, 947–962.CrossRefGoogle Scholar
  27. 27.
    Sheff, M. A., & Thorn, K. S. (2004). Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast, 21, 661–670.CrossRefGoogle Scholar
  28. 28.
    Young, C. L., Raden, D. L., Caplan, J. L., Czymmek, K. J., & Robinson, A. S. (2012). Cassette series designed for live-cell imaging of proteins and high-resolution techniques in yeast. Yeast, 29, 119–136.CrossRefGoogle Scholar
  29. 29.
    Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658.CrossRefGoogle Scholar
  30. 30.
    R Core Team. (2013). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  31. 31.
    Göringer, H. U., Stark, H., Böhm, C., Sander, B., & Golas, M. M. (2011). Three-dimensional reconstruction of Trypanosoma brucei editosomes using single-particle electron microscopy. Methods in Molecular Biology, 718, 3–22.CrossRefGoogle Scholar
  32. 32.
    Golas, M. M., Sander, B., Bessonov, S., Grote, M., Wolf, E., Kastner, B., et al. (2010). 3D cryo-EM structure of an active step I spliceosome and localization of its catalytic core. Molecular Cell, 40, 927–938.CrossRefGoogle Scholar
  33. 33.
    Sander, B., Golas, M. M., & Stark, H. (2003). Corrim-based alignment for improved speed in single-particle image processing. Journal of Structural Biology, 143, 219–228.CrossRefGoogle Scholar
  34. 34.
    Cherry, J. M., Hong, E. L., Amundsen, C., Balakrishnan, R., Binkley, G., Chan, E. T., et al. (2012). Saccharomyces genome database: The genomics resource of budding yeast. Nucleic Acids Research, 40, D700–D705.CrossRefGoogle Scholar
  35. 35.
    Lichty, J. J., Malecki, J. L., Agnew, H. D., Michelson-Horowitz, D. J., & Tan, S. (2005). Comparison of affinity tags for protein purification. Protein Expression and Purification, 41, 98–105.CrossRefGoogle Scholar
  36. 36.
    Gauss, R., Trautwein, M., Sommer, T., & Spang, A. (2005). New modules for the repeated internal and N-terminal epitope tagging of genes in Saccharomyces cerevisiae. Yeast, 22, 1–12.CrossRefGoogle Scholar
  37. 37.
    Guldener, U., Heck, S., Fielder, T., Beinhauer, J., & Hegemann, J. H. (1996). A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Research, 24, 2519–2524.CrossRefGoogle Scholar
  38. 38.
    Cubitt, A. B., Woollenweber, L. A., & Heim, R. (1999). Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. Methods in Cell Biology, 58, 19–30.CrossRefGoogle Scholar
  39. 39.
    Cormack, B. P., Bertram, G., Egerton, M., Gow, N. A., Falkow, S., & Brown, A. J. (1997). Yeast-enhanced green fluorescent protein (yEGFP): A reporter of gene expression in Candida albicans. Microbiology, 143(Pt 2), 303–311.CrossRefGoogle Scholar
  40. 40.
    Heim, R., & Tsien, R. Y. (1996). Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Current Biology, 6, 178–182.CrossRefGoogle Scholar
  41. 41.
    Heikal, A. A., Hess, S. T., Baird, G. S., Tsien, R. Y., & Webb, W. W. (2000). Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: Coral red (dsRed) and yellow (Citrine). Proceedings of the National Academy of Sciences USA, 97, 11996–12001.CrossRefGoogle Scholar
  42. 42.
    Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., & Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnology, 20, 87–90.CrossRefGoogle Scholar
  43. 43.
    Häcker, I., Sander, B., Golas, M. M., Wolf, E., Karagoz, E., Kastner, B., et al. (2008). Localization of Prp8, Brr2, Snu114 and U4/U6 proteins in the yeast tri-snRNP by electron microscopy. Nature Structural & Molecular Biology, 15, 1206–1212.CrossRefGoogle Scholar
  44. 44.
    Pronk, J. T., Yde Steensma, H., & Van Dijken, J. P. (1996). Pyruvate metabolism in Saccharomyces cerevisiae. Yeast, 12, 1607–1633.CrossRefGoogle Scholar
  45. 45.
    Kresze, G. B., & Ronft, H. (1981). Pyruvate dehydrogenase complex from baker’s yeast. 1. Purification and some kinetic and regulatory properties. European Journal of Biochemistry, 119, 573–579.CrossRefGoogle Scholar
  46. 46.
    Kresze, G. B., & Ronft, H. (1981). Pyruvate dehydrogenase complex from baker’s yeast. 2. Molecular structure, dissociation, and implications for the origin of mitochondria. European Journal of Biochemistry, 119, 581–587.CrossRefGoogle Scholar
  47. 47.
    Stoops, J. K., Cheng, R. H., Yazdi, M. A., Maeng, C. Y., Schroeter, J. P., Klueppelberg, U., et al. (1997). On the unique structural organization of the Saccharomyces cerevisiae pyruvate dehydrogenase complex. Journal of Biological Chemistry, 272, 5757–5764.CrossRefGoogle Scholar
  48. 48.
    Gu, Y., Zhou, Z. H., McCarthy, D. B., Reed, L. J., & Stoops, J. K. (2003). 3D electron microscopy reveals the variable deposition and protein dynamics of the peripheral pyruvate dehydrogenase component about the core. Proceedings of the National Academy of Sciences USA, 100, 7015–7020.CrossRefGoogle Scholar
  49. 49.
    Zhou, Z. H., Liao, W., Cheng, R. H., Lawson, J. E., McCarthy, D. B., Reed, L. J., et al. (2001). Direct evidence for the size and conformational variability of the pyruvate dehydrogenase complex revealed by three-dimensional electron microscopy. The “breathing” core and its functional relationship to protein dynamics. Journal of Biological Chemistry, 276, 21704–21713.CrossRefGoogle Scholar
  50. 50.
    Wais, U., Gillmann, U., & Ullrich, J. (1973). Isolation and characterisation of pyruvate dehydrogenase complex from brewer’s yeast. Hoppe-Seyler´ s Zeitschrift für physiologische Chemie, 354, 1378–1388.CrossRefGoogle Scholar
  51. 51.
    Gey, U., Czupalla, C., Hoflack, B., Rodel, G., & Krause-Buchholz, U. (2008). Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases. Journal of Biological Chemistry, 283, 9759–9767.CrossRefGoogle Scholar
  52. 52.
    Iwasa, M., Maeda, K., Narita, A., Maeda, Y., & Oda, T. (2008). Dual roles of Gln137 of actin revealed by recombinant human cardiac muscle alpha-actin mutants. Journal of Biological Chemistry, 283, 21045–21053.CrossRefGoogle Scholar
  53. 53.
    Joseph, R. E., & Andreotti, A. H. (2008). Bacterial expression and purification of interleukin-2 tyrosine kinase: Single step separation of the chaperonin impurity. Protein Expression and Purification, 60, 194–197.CrossRefGoogle Scholar
  54. 54.
    Perez-Victoria, F. J., & Bonifacino, J. S. (2009). Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network. Molecular and Cellular Biology, 29, 5251–5263.CrossRefGoogle Scholar
  55. 55.
    Peters, N. E., Ferguson, B. J., Mazzon, M., Fahy, A. S., Krysztofinska, E., Arribas-Bosacoma, R., et al. (2013). A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus. PLoS Pathogens, 9, e1003649.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jay Rai
    • 1
    • 3
  • J. Kalyani Pemmasani
    • 1
  • Andriy Voronovsky
    • 2
  • Ida S. Jensen
    • 2
  • Arulmani Manavalan
    • 1
  • Jens R. Nyengaard
    • 1
    • 3
  • Monika M. Golas
    • 2
    • 3
  • Bjoern Sander
    • 1
    • 3
  1. 1.Stereology and EM Laboratory, Department of Clinical Medicine, Institute of Clinical MedicineAarhus UniversityAarhus CDenmark
  2. 2.Department of BiomedicineAarhus UniversityAarhus CDenmark
  3. 3.Centre for Stochastic Geometry and Advanced BioimagingAarhus UniversityAarhus CDenmark

Personalised recommendations