Skip to main content
Log in

Simultaneous Retention of Thermostability and Specific Activity in Chimeric Human Alkaline Phosphatases

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Alkaline phosphatases (APs) are a family of dimeric metalloenzymes that has been utilized in many areas due to its ability to hydrolyze a variety of phosphomonoesters. While mammalian APs have higher specific activity than prokaryotic APs, they are generally less thermostable. To cultivate the possibility to confer mammalian APs with higher thermostability as well as high activity, we focused on human AP isozymes. Among the four isozymes of human APs, placental AP (PLAP) retains the highest thermostability, while intestinal AP (IAP) has the highest specific activity. Since the two APs display high homology, a series of chimeric enzymes were made in a secreted form to analyze their properties. Surprisingly, chimeric APs with IAP residues at the N-terminal and PLAP residues at the C-terminal regions showed higher specific activity than PLAP, while keeping thermostability as high as PLAP. Especially, one showed similar specific activity to IAP, while showing slower inactivation than PLAP after incubation at 75 °C. Interestingly, the mutant also showed higher resistance to uncompetitive inhibitors Phe and Leu than their parent enzymes, possibly due to increased hydrophilicity of the active site entrance residues. The obtained chimera will be useful as a novel reporter in various assays including gene hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Millan, J. L. (2006). Mammalian alkaline phosphatases: From biology to applications in medicine and biotechnology. Weinheim: Wiley.

    Book  Google Scholar 

  2. Stec, B., Holtz, K. M., & Kantrowitz, E. R. (2000). A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Journal of Molecular Biology, 299(5), 1303–1311.

    Article  CAS  Google Scholar 

  3. Murphy, J. E., Tibbitts, T. T., & Kantrowitz, E. R. (1995). Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases. Journal of Molecular Biology, 253(4), 604–617.

    Article  CAS  Google Scholar 

  4. Berger, J., Hauber, J., Hauber, R., Geiger, R., & Cullen, B. R. (1988). Secreted placental alkaline phosphatase: A powerful new quantitative indicator of gene expression in eukaryotic cells. Gene, 66(1), 1–10.

    Article  CAS  Google Scholar 

  5. Le Du, M.-H., Stigbrand, T., Taussig, M. J., Menez, A., & Stura, E. A. (2001). Crystal structure of alkaline phosphatase from human placenta at 1.8 Å resolution. Implication for a substrate specificity. Journal of Biological Chemistry, 276(12), 9158–9165.

    Article  Google Scholar 

  6. Le Du, M.-H., & Millán, J. L. (2002). Structural evidence of functional divergence in human alkaline phosphatases. Journal of Biological Chemistry, 277(51), 49808–49814.

    Article  Google Scholar 

  7. Li, Y., Drummond, D., Sawayama, A., Snow, C. D., Bloom, J. D., & Arnold, F. H. (2007). A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments. Nature Biotechnology, 25(9), 1051–1056.

    Article  CAS  Google Scholar 

  8. Romero, P. A., & Arnold, F. H. (2009). Exploring protein fitness landscapes by directed evolution. Nature Reviews Molecular Cell Biology, 10(12), 866–876.

    Article  CAS  Google Scholar 

  9. Bozonnet, S., Kim, T.-J., Bønsager, B. C., Kramhøft, B., Nielsen, P. K., Bak-Jensen, K. S., et al. (2003). Engineering of barley α-amylase. Biocatalysis and Biotransformation, 21(4–5), 209–214.

    CAS  Google Scholar 

  10. Sasajima, Y., Iwasaki, R., Tsumoto, K., Kumagai, I., Ihara, M., & Ueda, H. (2010). Expression of antibody variable region-human alkaline phosphatase fusion proteins in mammalian cells. Journal of Immunological Methods, 361(1–2), 57–63.

    Article  CAS  Google Scholar 

  11. Henthorn, P. S., Raducha, M., Kadesch, T., Weiss, M. J., & Harris, H. (1988). Sequence and characterization of the human intestinal alkaline phosphatase gene. Journal of Biological Chemistry, 263(24), 12011–12019.

    CAS  Google Scholar 

  12. Hoylaerts, M. F., Ding, L., Narisawa, S., Van Kerckhoven, S., & Millan, J. L. (2006). Mammalian alkaline phosphatase catalysis requires active site structure stabilization via the N-terminal amino acid microenvironment. Biochemistry, 45(32), 9756–9766.

    Article  CAS  Google Scholar 

  13. Harris, H. (1989). The human alkaline phosphatases: What we know and what we don’t know. Clinica Chimica Acta, 186(2), 133–150.

    Article  Google Scholar 

  14. Song, J. K., & Rhee, J. S. (2000). Simultaneous enhancement of thermostability and catalytic activity of phospholipase A(1) by evolutionary molecular engineering. Applied and Environmental Microbiology, 66(3), 890–894.

    Article  CAS  Google Scholar 

  15. Wang, Q., & Xia, T. (2008). Enhancement of the activity and alkaline pH stability of Thermobifida fusca xylanase A by directed evolution. Biotechnology Letters, 30(5), 937–944.

    Article  CAS  Google Scholar 

  16. Kozlenkov, A., Manes, T., Hoylaerts, M. F., & Millán, J. L. (2002). Function assignment to conserved residues in mammalian alkaline phosphatases. Journal of Biological Chemistry, 277(25), 22992–22999.

    Article  CAS  Google Scholar 

  17. Kozlenkov, A., Le Du, M. H., Cuniasse, P., Ny, T., Hoylaerts, M. F., & Millan, J. L. (2004). Residues determining the binding specificity of uncompetitive inhibitors to tissue-nonspecific alkaline phosphatase. Journal of Bone and Mineral Research, 19(11), 1862–1872.

    Article  CAS  Google Scholar 

  18. Bossi, M., Hoylaerts, M. F., & Millán, J. L. (1993). Modifications in a flexible surface loop modulate the isozyme-specific properties of mammalian alkaline phosphatases. Journal of Biological Chemistry, 268(34), 25409–25416.

    CAS  Google Scholar 

  19. Watanabe, T., Wada, N., Kim, E. E., Wyckoff, H. W., & Chou, J. Y. (1991). Mutation of a single amino acid converts germ cell alkaline phosphatase to placental alkaline phosphatase. Journal of Biological Chemistry, 266(31), 21174–21178.

    CAS  Google Scholar 

  20. Boulanger, R. R. J., & Kantrowitz, E. R. (2003). Characterization of a monomeric Escherichia coli alkaline phosphatase formed upon a single amino acid substitution. Journal of Biological Chemistry, 278(26), 23497–23501.

    Article  CAS  Google Scholar 

  21. Hoylaerts, M. F., Manes, T., & Millan, J. L. (1992). Molecular mechanism of uncompetitive inhibition of human placental and germ-cell alkaline phosphatase. Biochemical Journal, 286(1), 23–30.

    CAS  Google Scholar 

  22. Imanishi, H., Hada, T., Muratani, K., Hirano, K., & Higashino, K. (1990). Expression of a hybrid form of alkaline phosphatase isoenzyme in a newly established cell line (HuG-1) from a gastric cancer patient. Cancer Research, 50(11), 3408–3412.

    CAS  Google Scholar 

  23. Kiffer-Moreira, T., Sheen, C. R., Gasque, K. C., Bolean, M., Ciancaglini, P., van Elsas, A., et al. (2014). Catalytic signature of a heat-stable, chimeric human alkaline phosphatase with therapeutic potential. PLoS One, 9(2), e89374.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Yusuke Tomozoe, Yoshiyuki Hiraishi, Kyoichi Matsuba, Hironosuke Hayashi, and Noriho Kamiya for their valuable suggestions. This project was partly supported by PRESTO program, JST, Japan, by a Grant-in-Aid for Scientific Research (B20360368, B24360336) from JSPS, Japan, and by the Global COE Program for Chemistry Innovation, MEXT, Japan. We also thank Fujifilm Co. and Hitachi-Aloka Medical Systems Co. for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ueda.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasajima, Y., Kohama, Y., Kojima-Misaizu, M. et al. Simultaneous Retention of Thermostability and Specific Activity in Chimeric Human Alkaline Phosphatases. Mol Biotechnol 56, 953–961 (2014). https://doi.org/10.1007/s12033-014-9774-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9774-9

Keywords

Navigation