Skip to main content
Log in

Characterization of Cryptopygus antarcticus Endo-β-1,4-Glucanase from Bombyx mori Expression Systems

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Endo-β-1,4-glucanase (CaCel) from Antarctic springtail, Cryptopygus antarcticus, a cellulase with high activity at low temperature, shows potential industrial use. To obtain sufficient active cellulase for characterization, CaCel gene was expressed in Bombyx mori-baculovirus expression systems. Recombinant CaCel (rCaCel) has been expressed in Escherichia coli (Ec-CaCel) at temperatures below 10 °C, but the expression yield was low. Here, rCaCel with a silkworm secretion signal (Bm-CaCel) was successfully expressed and secreted into pupal hemolymph and purified to near 90 % purity by Ni-affinity chromatography. The yield and specific activity of rCaCel purified from B. mori were estimated at 31 mg/l and 43.2 U/mg, respectively, which is significantly higher than the CaCel yield obtained from E. coli (0.46 mg/l and 35.8 U/mg). The optimal pH and temperature for the rCaCels purified from E. coli and B. mori were 3.5 and 50 °C. Both rCaCels were active at a broad range of pH values and temperatures, and retained more than 30 % of their maximal activity at 0 °C. Oligosaccharide structural analysis revealed that Bm-CaCel contains elaborated N- and O-linked glycans, whereas Ec-CaCel contains putative O-linked glycans. Thermostability of Bm-CaCel from B. mori at 60 °C was higher than that from E. coli, probably due to glycosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brummell, D. A., Catala, C., Lashbrook, C. C., & Bennett, A. B. (1997). A membrane-anchored E-type endo-1,4-beta-glycanase is localized on golgi and plasma membranes of higher plants. Proceedings of the National Academy of Sciences of the United States of America, 94, 4794–4799.

    Article  CAS  Google Scholar 

  2. Crawford, A. C., Kricker, J. A., Anderson, A. J., Richardson, N. R., & Mather, P. B. (2004). Structure and function of a cellulase gene in redclaw crayfish Cherax quandricarinatus. Gene, 340, 267–274.

    Article  CAS  Google Scholar 

  3. Tomme, P., Warren, R. A., & Gilkes, N. R. (1995). Cellulose hydrolysis by bacteria and fungi. Advances in Microbial Physiology, 37, 1–81.

    Article  CAS  Google Scholar 

  4. Wilson, D. B., & Irwin, D. C. (1999). Genetics and properties of cellulases. Advances in Biochemical Engineering/Biotechnology, 65, 1–21.

    Article  CAS  Google Scholar 

  5. Heikinheimo, L., Buchert, J., Miettinen-Oinonem, A., & Suominen, P. (2000). Treating denim fabrics with Trichoderma reesei cellulases. Textile Research Journal, 70, 969–973.

    Article  CAS  Google Scholar 

  6. Ito, S. (1997). Alkaline cellulases from alkaliphilic Bacillus: Enzymatic properties, genetics, and application to detergents. Extremophiles, 1, 61–66.

    Article  Google Scholar 

  7. Yu, P., Mckinnon, J. J., Maenz, D. D., Olkowski, A. A., Racz, V. J., & Christensen, D. A. (2003). Enzymic release of reducing sugars from oat hulls by cellulase, as influenced by Aspergillus ferulic acid esterase and Trichoderma xylanase. Journal of Agricultural and Food Chemistry, 1, 218–223.

    Article  Google Scholar 

  8. Maki, M. L., Idrees, A., Leung, K. T., & Qin, W. (2012). Newly isolated and characterized bacteria with great application potential for decomposition of lignocellulosic biomass. Journal of Molecular Microbiology and Biotechnology, 22, 156–166.

    Article  CAS  Google Scholar 

  9. Mandels, M. (1985). Applications of cellulases. Biochemical Society Transactions, 13, 414–415.

    CAS  Google Scholar 

  10. Lenting, H. B., & Warmoeskerken, M. M. (2001). Guidelines to come to minimized tensile strength loss upon cellulase application. Journal of Biotechnology, 89, 227–232.

    Article  CAS  Google Scholar 

  11. Hayashi, K., Nimura, Y., Ohara, N., Uchimura, T., Suzuki, H., Komagata, K., et al. (1996). Low-temperature active cellulase produced by Acremonium alcalophilum JCM 7366. Seibutsu-kogaku kaishi, 74, 7–10.

    CAS  Google Scholar 

  12. Iyo, A. H., & Forsberg, C. W. (1999). A cold-active glucanase from the ruminal bacterium Fibrobacter succinogenes S85. Applied and Environment Microbiology, 65, 995–998.

    CAS  Google Scholar 

  13. Cristobal, H. A., Breccia, J. D., & Abate, C. M. (2008). Isolation and molecular characterization of Shewanella sp. G5, a producer of cold-active beta-d-glucosidases. Journal of Basic Microbiology, 48, 16–24.

    Article  CAS  Google Scholar 

  14. Berg, M. P., Stoffer, M., & van den Heuvel, H. H. (2004). Feeding guilds in Collembola base on digestive enzymes. Pedobiologia, 48, 589–601.

    Article  Google Scholar 

  15. Song, J. M., Nam, K. W., Kang, S. G., Kim, C. G., Kwon, S. T., & Lee, Y. H. (2008). Molecular cloning and characterization of a novel cold-active β-1,4-d-mannanase from the Antarctic springtail, Cryptopygus antarcticyus. Comparative Biochemistry and Physiology B, 151, 32–40.

    Article  Google Scholar 

  16. Song, J. M., Nam, K. W., Sun, Y. U., Kang, M. H., Kim, C. G., Kwon, S. T., et al. (2010). Molecular and biochemical characterizations of a novel arthropod endo-β-1,3-glucanase from the Antarctic sprigtail, Cryptopygus antarcticus, horizontally acquired from bacteria. Comparative Biochemistry and Physiology B, 155, 403–412.

    Article  Google Scholar 

  17. Song, J. M., An, Y. J., Kang, M. H., Lee, Y. H., & Cha, S. S. (2012). Cultivation at 6–10 °C is an effective strategy to overcome the insolubility of recombinant proteins in Escherichia coli. Protein Expression and Purification, 82, 297–301.

    Article  CAS  Google Scholar 

  18. Maeda, S. (1994). Expression of foreign genes in insect cells using baculovirus vectors. Insect cell biotechnology (pp. 1–31). Boca Raton: CRC Press.

    Google Scholar 

  19. Miyajima, A., Schreurs, J., Otsu, K., Kondo, A., Arai, K., & Maeda, S. (1987). Use of the silkworm, Bombyx mori, and an insect baculovirus vector for high-level expression and secretion of biologically active mouse interleukin-3. Gene, 58, 273–281.

    Article  CAS  Google Scholar 

  20. Imperiali, B., & O’Connor, S. E. (1999). Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Current Opinion in Chemical Biology, 3, 643–649.

    Article  CAS  Google Scholar 

  21. Ingeborg, S., Koen, S., Steve, G., Roland, C., Jozef, V. B., & Marc, C. (2004). Factors influencing glycosylation of Trichoderma reesei cellulases. I: Postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology, 14, 713–724.

    Article  Google Scholar 

  22. Harrison, M. J., Nouwens, A. S., Jardine, D. R., Zachara, N. E., Gooley, A. A., Nevalainen, H., et al. (1998). Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. European Journal of Biochemistry, 15, 119–127.

    Article  Google Scholar 

  23. Jeoh, T., Michener, W., Himmel, M. E., Decker, S. R., & Adney, W. S. (2008). Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnology for Biofuels, 1, 10–22.

    Article  Google Scholar 

  24. MacLeod, A. M., Gilkes, N. R., Escote-Carlson, L., Warren, R. A., Kilburn, D. G., & Miller, R. C, Jr. (1992). Streptomyces lividans glycosylates an exoglucanase (Cex) from Cellulomonas fimi. Gene, 121, 143–147.

    Article  CAS  Google Scholar 

  25. Zhao, X. H., Wang, W., Wang, F. Q., & Wei, D. Z. (2012). A comparative study of β-1,4-endoglucanase (possessing β-1,4-exoglucanase activity) from Bacillus subtilis LH expressed in Pichia pastoris GS115 and Escherichia coli Rosetta (DE3). Bioresource Technology, 110, 539–545.

    Article  CAS  Google Scholar 

  26. Yan, Q., Hua, C., Yang, S., Li, Y., & Jiang, Z. (2012). High level expression of extracellular secretion of a β-glucosidase gene (PtBglu3) from Paecilomyces thermophile in Pichia pastoris. Protein Expression and Purification, 84, 64–72.

    Article  CAS  Google Scholar 

  27. Ni, J., Takehara, M., & Watanabe, H. (2005). Heterologous overexpression of a mutant termite cellulase gene in Escherichia coli by DNA shuffling of four orthologous parental cDNA. Bioscience, Biotechnology, and Biochemistry, 69, 1711–1720.

    Article  CAS  Google Scholar 

  28. Hirayama, K., Watanabe, H., Tokuda, G., Kitamoto, K., & Arioka, M. (2010). Purification and characterization of termite endogenous beta-1,4-endoglucanases produced in Aspergillus oryzae. Bioscience, Biotechnology, and Biochemistry, 74, 1680–1686.

    Article  CAS  Google Scholar 

  29. Li, X. H., Zhang, P., Wang, M. X., Zhou, F., Malik, F. A., Yang, H. J., et al. (2011). Expression of Trichoderma viride endoglucanase III in the larvae of silkworm, Bombyx mori. L. and characteristic analysis of the recombinant protein. Molecular Biology Reports, 38, 3897–3902.

    Article  CAS  Google Scholar 

  30. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning; a laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  31. Katsuma, S., Daimon, T., Mita, K., & Shimada, T. (2006). Lepidopteran ortholog of Drosophila breathless is a receptor for the baculovirus fibroblast growth factor. Journal of Virology, 80, 5474–5481.

    Article  CAS  Google Scholar 

  32. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  33. Righetti, P. G., & Drysdale, J. W. (1974). Isoelectric focusing in gels. Journal of Chromatography, 98, 271–321.

    Article  CAS  Google Scholar 

  34. Baenziger, J. U., & Fiete, D. (1979). Structural determinants of concanavalin A specificity for oligosaccharides. Journal of Biological Chemistry, 254, 2400–2407.

    CAS  Google Scholar 

  35. Tateno, H., Nakamura-Tsuruta, S., & Hirabayashi, J. (2009). Comparative analysis of core-fucose-binding lectins from Lens culinaris and Pisum Sativum using frontal affinity chromatograph. Glycobiology, 19, 527–536.

    Article  CAS  Google Scholar 

  36. Green, E. D., & Baenziger, J. U. (1987). Oligosaccharide specificities of Phaseolus vulgaris leukoagglutinating and erythroagglutinating phytohemagglutinins. Interactions with N-glycanase released oligosaccharides. Journal of Biological Chemistry, 262, 12018–12029.

    CAS  Google Scholar 

  37. Yamamoto, K., Tsuji, T., Matsumoto, I., & Osawa, T. (1981). Structural requirements for the binding of oligosaccharides and glycopeptides to immobilized wheat germ agglutinin. Biochemistry, 20, 5894–5899.

    Article  CAS  Google Scholar 

  38. Molin, K., Fredman, P., & Svennerholm, L. (1986). Binding specificities of the lectins PNA, WGA and UEA I to polyvinylchloride adsorbed glycosphingolipids. FEBS Letters, 205, 51–55.

    Article  CAS  Google Scholar 

  39. Maljaars, C. E., Halkes, K. M., de Oude, W. L., Haseley, S. R., Upton, P. J., McDonnell, M. B., et al. (2006). Affinity determination of Ricinus communis agglutinin ligands identified from combinatorial O- and S-, N-glycopeptide libraries. Journal of Combinatorial Chemistry, 8, 812–819.

    Article  CAS  Google Scholar 

  40. Farr, A. G., Anderson, S. K., Braddy, S. C., & Mejino, J. L, Jr. (1988). Selective binding of Dolichos biflorus agglutinin to L3T4-, Lyt-2-thymocytes. Expression of terminal alpha-linked N-acetyl-d-galactosamine residues defines a subpopulation of fetal and adult murine thymocytes. Journal of Immunology, 140, 1014–1021.

    CAS  Google Scholar 

  41. Shah, M. H., Telang, S. D., Shan, P. M., & Patel, P. S. (2008). Tissue and serum alpha 2-3- and alpha 2-6-linkage specific sialylation changes in oral carcinogenesis. Glycoconjugate Journal, 25(3), 279–290.

    Article  CAS  Google Scholar 

  42. Yabe, R., Itakura, Y., Nakamura-Tsuruta, S., Iwaki, J., Kuno, A., & Hirabayashi, J. (2009). Engineering a versatile tandem repeat-type alpha2-6sialic acid-binding lectin. Biochemical and Biophysical Research Communications, 384(2), 204–209.

    Article  CAS  Google Scholar 

  43. Yasuno, S., Murata, T., Kokubo, K., Yamaguchi, T., & Kamei, M. (1997). Two-mode analysis by high-performance liquid chromatography of p-aminobenzoic ethyl ester-derivatized monosaccharides. Bioscience, Biotechnology, and Biochemistry, 61, 1944–1946.

    Article  CAS  Google Scholar 

  44. Stalbrand, H., Siika-aho, M., Tenkanen, M., & Viikari, L. (1993). Purification and characterization of two β-mananase from Trichoderma reesei. Journal of Biotechnology, 29, 229–242.

    Article  Google Scholar 

  45. Bessette, P. H., Aslund, F., Beckwith, J., & Georgiou, G. (1999). Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proceedings of the National Academy of Sciences of the United States of America, 96, 13703–13708.

    Article  CAS  Google Scholar 

  46. Zhou, F., Olman, V., & Xu, Y. (2009). Large-scale analyses of glycosylation in cellulases. Genomics, Proteomics & Bioinformatics, 7, 194–199.

    Article  CAS  Google Scholar 

  47. Maley, F., Trimble, R. B., Tarentino, A. L., & Plummer, T. H. (1989). Characterization of glycoportins and their associated oligosaccharides through the use of endoglycosidases. Analytical Biochemistry, 180, 195–204.

    Article  CAS  Google Scholar 

  48. Tretter, V., Altmann, F., & Marz, L. (1991). Peptide-N4-(N-acetyl-beta-glucosminyl) asparagine amidase F cannot release glycans with fucose attached alph 1, 3 to the asparagine-linked N-acetylglycosamine residue. European Journal of Biochemistry, 199, 647–652.

    Article  CAS  Google Scholar 

  49. Naoyuki, T., Akemi, S., Yukishige, I., Hisashi, N., Toshisuke, K., & Sumihiro, H. (2008). Experimental glycoscience glycochemistry (pp. 182–185). Berlin: Springer.

    Google Scholar 

  50. Okumura, F., Kameda, H., Ojima, T., & Hatakeyama, S. (2010). Expression of recombinant sea urchin cellulase SnEG54 using mammalian cell lines. Biochemical and Biophysical Research Communications, 395, 352–355.

    Article  CAS  Google Scholar 

  51. Nakazawa, H., Okada, K., Kobayashi, R., Kubota, T., Onodera, T., Ochiai, N., et al. (2008). Characterization of the catalytic domains of Trichoderma reesei endoglucanase I, II, and III, expressed in Escherichia coli. Applied Microbiology and Biotechnology, 81, 681–689.

    Article  CAS  Google Scholar 

  52. Fan, H. X., Miao, L. L., Liu, Y., Liu, H. C., & Liu, Z. P. (2011). Gene cloning and characterization of a cold-adapted β-glucosidase belonging to glycosyl hydrolase family 1 from a psychrotolerant bacterium Micrococcus antarcticus. Enyzme and Microbial Technology, 49, 94–99.

    Article  CAS  Google Scholar 

  53. Garsoux, G., Lamotte, J., Gerday, C., & Feller, G. (2004). Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Biochemical Journal, 384, 247–253.

    Article  CAS  Google Scholar 

  54. Oikawa, T., Tsukagawa, Y., & Soda, K. (1998). Endo- β-glucanase secreted by a psychrotrophic yeast: Purification and characterization. Bioscience, Biotechnology, and Biochemistry, 62, 1751–1756.

    Article  CAS  Google Scholar 

  55. Wu, X., Kamei, K., Sato, H., Sato, S. I., Takano, R., Ichida, M., et al. (2001). High-level expression of human acidic fibroblast growth factor and basic fibroblast growth factor in silkworm (Bombyx mori L.) using recombinant baculovirus. Protein Expression and Purification, 21, 192–200.

    Article  CAS  Google Scholar 

  56. Sumaty, S., Palhan, V. B., & Gopinathan, K. P. (1996). Expression of human growth hormone in silkworm larvae through recombinant Bombyx mori nuclear polyhedrosis virus. Protein Expression and Purification, 7, 262–268.

    Article  Google Scholar 

  57. Liu, A., Yang, G. Z., & Wu, X. F. (2004). Production of recombinant human osteoprotegrin from Trichoplusia ni cells and Bombyx mori larvae. Protein and Peptide Letters, 11, 317–323.

    Article  CAS  Google Scholar 

  58. Kost, T. A., Condreay, J. P., & Jarvis, D. L. (2005). Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nature Biotechnology, 23, 567–575.

    Article  CAS  Google Scholar 

  59. Chen, J., Wu, X. F., & Zhang, Y. Z. (2006). Expression, purification and characterization of human GM-CSF using silkworm pupae (Bombyx mori) as a bioreactor. Journal of Biotechnology, 123, 236–247.

    Article  CAS  Google Scholar 

  60. Li, X. H., Zhang, P., Liang, S., Zhou, F., Wang, M. X., Bhaskar, R., et al. (2012). Molecular cloning and characterization of a putative cDNA encoding endoglucanase IV from Trichoderma viride and its expression in Bombyx mori. Applied Biochemistry and Biotechnology, 166, 309–320.

    Article  CAS  Google Scholar 

  61. Zhang, D., Lax, A. R., Raina, A. K., & Bland, J. M. (2009). Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from Coptotermes formosanus and expressed in E. coli. Insect Biochemistry and Molecular Biology, 39, 516–522.

    Article  CAS  Google Scholar 

  62. Weerapana, E., & Imperiali, B. (2006). Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology, 16, 91–101.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Young-Sik Seok of the Institute of Kangwon-do Agricultural Pure Stock, Korea for the provision and maintenance of silkworms. This work was supported by the Bio-industry Technology Development Program, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea (No: 111062-03-1-HD110 and 111116–01–1-SB010) and partially by the National Fisheries Research and Development Institute (RP-2014-AQ-027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Mee Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S.M., Sung, H.S., Kang, M.H. et al. Characterization of Cryptopygus antarcticus Endo-β-1,4-Glucanase from Bombyx mori Expression Systems. Mol Biotechnol 56, 878–889 (2014). https://doi.org/10.1007/s12033-014-9767-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9767-8

Keywords

Navigation