Skip to main content
Log in

Rapid and Sensitive Detection of Sclerotium rolfsii Associated with Collar Rot Disease of Amorphophallus paeoniifolius by Species-Specific Polymerase Chain Reaction Assay

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Collar rot disease caused by Sclerotium rolfsii is an economically important disease prevailing in all Amorphophallus growing areas. The pathogen propagules surviving in soil and planting material are the major sources of inoculum. A nested PCR assay has been developed for specific detection of S. rolfsii in soil and planting material. The PCR detection limit was 10 pg in conventional assay whereas 0.1 pg in nested assay. The primers designed were found to be highly specific and could be used for accurate identification of pathogen up to species level. The protocol was standardized for detection of the pathogen in artificially and naturally infected field samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hetterscheild, W. L. A., & Ittenbach, S. (1996). Everything you always wanted to know about Amorphophallus, but were afraid to stick your nose into. Aroideana, 19, 7–13.

    Google Scholar 

  2. Misra, R. S. (1997). Diseases of tuber crops in Northern and Eastern India. CTCRI technical series (Vol. 22, p. 27). Thiruvananthapuram: CTCRI.

    Google Scholar 

  3. Aycock, R. (1966). Stem rot and other diseases caused by Sclerotium rolfsii or the status of Rolf’s fungus after 70 years. North Carolina Agricultural Experiment Station Technical Bulletin, 174, 202.

    Google Scholar 

  4. Punja, Z. K. (1988). Sclerotium (Athelia) rolfsii, a pathogen of many plant species. Advances in Plant Pathology, 6, 523–534.

    Google Scholar 

  5. Misra, R. S., Sriram, S., Nedunchezhiyan, M., & Mohandas, C. (2003). Field and storage diseases of Amorphophallus and their management. Aroideana, 26, 101–112.

    Google Scholar 

  6. Leivens, B., Grauwet, T. J. M. A., Cammue, B. P. A., & Thomma, B. P. H. J. (2005). Recent developments in diagnostics of plant pathogens: a review. In: S.G. Pandalai (Ed.), Recent research developments in microbiology vol. 9 (pp. 57–79). Kerala, India.

  7. Bonants, P., Weerdt, Hagenaar-de, Van Gent-Pelzer, M., Lacourt, I., Cooke, D., & Duncan, J. (1997). Detection and identification of Phytophthora fragarie Hickman by the polymerase chain reaction. European Journal of Plant Pathology, 103, 345–355.

    Article  CAS  Google Scholar 

  8. McCartney, H. A., Foster, S. J., Fraaije, B. A., & Ward, E. (2003). Molecular diagnostics for fungal plant pathogens. Pest Management Science, 59, 129–1472. doi:10.1002/ps.575.

    Article  CAS  Google Scholar 

  9. Henson, J. M., & French, R. (1993). The polymerase chain reaction and plant disease diagnosis. Annual Review of Phytopathology, 31, 81–109.

    Article  CAS  Google Scholar 

  10. Ristaino, J. B., Madritch, M., & Trout, C. I. (1998). PCR amplification of ribosomal DNA for species identification in the plant pathogen genus Phytophthora. Applied and Environmental Microbiology, 64, 948–954.

    CAS  Google Scholar 

  11. Schaad, N. W., Frederick, R. D., Shaw, J., Schneider, W. L., Hickson, R., Petrillo, M. D., et al. (2003). Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annual Review of Phytopathology, 41, 305–324.

    Article  CAS  Google Scholar 

  12. Willits, D. A., & Sherwood, J. E. (1999). Polymerase chain reaction detection of Ustilago hordei in leaves of susceptible and resistant barley varieties. Phytopathology, 89, 212–217.

    Article  CAS  Google Scholar 

  13. Grote, D., Olmos, A., Kofoet, A., Tuser, J. J., Bertolini, E., & Cambra, M. (2002). Specific and sensitive detection of Phytophthora nicotianae by simple and nested PCR. European Journal of Plant Pathology, 108, 197–207.

    Article  CAS  Google Scholar 

  14. Wallenhammer, A., & Arwidsson, O. (2001). Detection of Plasmodiophora brassicae by PCR in naturally infested soils. European Journal of Plant Pathology, 107, 313–321.

    Article  Google Scholar 

  15. Mishra, A. K., Jeeva, M. L., Pravi, V., Misra, R. S., & Hegde, V. (2010). Rapid and sensitive detection of Phytophthora colacasiae associated with leaf blight of taro by species-specific polymerase chain reaction assay. Annals of Microbiology, 60, 209–215.

    Article  CAS  Google Scholar 

  16. Mishra, A. K., Sharma, K., & Misra, R. S. (2008). Rapid and efficient method for the extraction of fungal and oomycetes genomic DNA. Gene, Genome and Genomics, 2, 57–59.

    Google Scholar 

  17. Jeeva, M. L., Sharma, K., Mishra, A. K., & Misra, R. S. (2008). Rapid extraction of genomic DNA from Sclerotium rolfsii causing collar rot of Amorphophallus. Genes, Genomes and Genomics, 2(1), 60–62.

    Google Scholar 

  18. Sambrook, J., Fritsch, R. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  19. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, & J. J. Sininsky (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego: Academic press.

    Google Scholar 

  20. Hall, T. A. (1999). Bioedit: A user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  21. Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7, 203–214.

    Article  CAS  Google Scholar 

  22. Wang, H., Qi, M., & Cutler, A. J. (1993). A simple method of preparing plant samples for PCR. Nucleic Acids Research, 21, 4153–4154.

    Article  CAS  Google Scholar 

  23. Ippolito, A., Schena, L., & Nigro, F. (2002). Detection of Phytophthora nicotianae and P. citrophthora in citrus roots and soils by nested PCR. European Journal of Plant Pathology, 108, 855–868.

    Article  CAS  Google Scholar 

  24. Schena, L., Nigro, F., & Ippolito, A. (2002). Identification and detection of Rosellinia necatrix by conventional and real-time Scorpio-PCR. European Journal of Plant Pathology, 108, 355–366.

    Article  CAS  Google Scholar 

  25. Weller, S. A., Elphinstone, J. G., Smith, N. C., Boonham, N., & Stead, D. E. (2000). Detection of Ralstonia solanacearum with a quantitative, multiplex, real time, fluorogenic (TaqMan) assay. Applied and Environment Microbiology, 66, 2853–2858.

    Article  CAS  Google Scholar 

  26. Liew, E. C. Y., MacLean, D. J., & Irwin, J. A. G. (1998). Specific PCR based detection of Phytophthora medicaginis using the intergenic spacer regions of the ribosomal DNA. Mycological Research, 102, 73–80.

    Article  CAS  Google Scholar 

  27. Schubert, R., Bahnweg, G., & Nechwatal, J. (1999). Detection and quantification of Phytophthora species which are associated with root to rot diseases in European deciduous forests by species specific polymerase chain reaction. European Journal of Plant Pathology, 29, 169–188.

    Google Scholar 

  28. Cooke, D. E. L., & Duncan, J. M. (1997). Phylogenetics analysis of Phytophthora species based on ITS 1 and ITS 2 sequences of the ribosomal RNA gene repeat. Mycological Research, 101, 667–677.

    Article  CAS  Google Scholar 

  29. Lee, S. B., & Taylor, J. W. (1990). Isolation of DNA from fungal mycelia and single spores. In M. A. Innis, D. H. Gelfand, J. J. Sininsky, & T. J. White (Eds.), OCR protocols: A guide to methods and applications (pp. 282–287). San Diego: Academic press.

    Google Scholar 

  30. Bruns, T. D., White, T. J., & Taylor, J. W. (1991). Fungal molecular systematic. Annual Review of Ecology and Systematics, 22, 525–564.

    Article  Google Scholar 

  31. Yao, C., Frederiksen, R. A., & Magill, C. W. (1992). Length heterogeneity in ITS 2 and the methylation status of CCGG and GCGC sites in the rRNA genes of the genus Peronosclerospora. Current Genetics, 22, 415–420.

    Article  CAS  Google Scholar 

  32. Cullen, D. W., Lees, A. K., Toth, I. K., & Duncan, J. M. (2002). Detection of Colletotrichum coccodes from soil and potato tubers by conventional and quantitative real-time PCR. Plant Pathology, 51, 281–292.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The funding provided for research work by the National Fund for Basic Strategic and Frontier Application Research in Agricultural Sciences (NFBSFARA), ICAR, New Delhi, India, is gratefully acknowledged. The authors thank The Director, Central Tuber Crops Research Institute, Thiruvananthapuram for providing the infrastructure facilities. We are also grateful to the Indian Institute of Spices Research (Calicut, India) for providing the Phytophthora cultures and the College of Agriculture (Vellayani, India) and CTCRI (Sreekariyam, India) for providing the other fungal and bacterial cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Jeeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pravi, V., Jeeva, M.L. & Archana, P.V. Rapid and Sensitive Detection of Sclerotium rolfsii Associated with Collar Rot Disease of Amorphophallus paeoniifolius by Species-Specific Polymerase Chain Reaction Assay. Mol Biotechnol 56, 787–794 (2014). https://doi.org/10.1007/s12033-014-9757-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9757-x

Keywords

Navigation