Skip to main content

Advertisement

Log in

Oligoprogenitor Cells Derived from Spermatogonia Stem Cells Improve Remyelination in Demyelination Model

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Embryonic stem (ES) like cells-derived testis represents a possible alternative to replace of neurons and glia. Here, we differentiated spermatogonia cells to oligoprogenitor (OP) like cells and transplanted them to demyelination model and assess their recovery potential in a demyelinated corpus callosum model in rats. ES like cells were differentiated to OP like cells using appropriate inducers and were transplanted in situ to demyelinated corpus callosum. Cell integration as well as demyelination extension and myelination intensity changes were evaluated using histologic studies and immunocytochemistry after 2 and 4 weeks post transplantation. Investigation of Nestin, NF68, Olig2, and NG2 by immunocytochemical technique indicated the differentiation of ES like cells to neuroprogenitor and oligodendrocyte like cells in each induction stage. Histologic findings showed a significant decrease in demyelination extension and a significant increase in remyelination intensity in cell transplanted groups. Also on the base of PLP expression, differentiation of transplanted cells was confirmed to myelinogenic cells using immunocytochemistry technique. We conclude that ES like cells derived from spermatogonia cells can be differentiated to OP like cells that can form myelin after transplantation into the demyelination model in rat, this represents recovery potential of spermatogonia cells which opens new window for cell therapeutic approaches using spermatogonial stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Noseworthy, J. H., Lucchinetti, C., Rodriguez, M., & Weinshenker, B. G. (2000). Multiple sclerosis. The New England Journal of Medicine, 343, 938–952.

    Article  CAS  Google Scholar 

  2. Manganas, L. N., & Maletic Savatic, M. (2005). Stem cell therapy for central nervous system demyelinating disease. Current Neurology and Neuroscience Reports, 5(3), 225–231.

    Article  CAS  Google Scholar 

  3. Siddharthan, C., David, H., Alexis, J., Chao, Z., Alastair, C., & Robin, J. M. F. (2008). Myelin repair: the role of stem and precursor cells in multiple sclerosis. Philosophical Transactions of the Royal Society B, 363, 171–183.

    Article  Google Scholar 

  4. Brustle, O., Jones, K. N., Learish, R. D., Karram, K., Choudhary, K., Wiestler, O. D., et al. (1999). Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science, 285, 754–756.

    Article  CAS  Google Scholar 

  5. Martino, G., Franklin, R. J., Van Evercooren, A. B., & Kerr, D. A. (2010). Stem cell transplantation in multiple sclerosis: current status and future prospects. Nature Reviews Neurology, 6, 247–255.

    Article  Google Scholar 

  6. Mizrak, S. C., Chikhovskaya, J. V., Sadri-Ardekani, H., van Daalen, S., Korver, C. M., Hovingh, S. E., et al. (2010). Embryonic stem cell-like cells derived from adult human testis. Human Reproduction, 25(1), 158–167.

    Article  CAS  Google Scholar 

  7. Nayernia, K. (2007). Stem cells derived from testis show promise for treating a wide variety of medical conditions. Cell Research, 17, 895–897.

    Article  CAS  Google Scholar 

  8. Kanatsu-Shinohara, M., Ogonuki, N., Inoue, K., Miki, H., Ogura, A., Toyokuni, S., et al. (2003). Long-termproliferation in culture and germline transmission of mouse male germline stem cells. Biology of Reproduction, 69, 612–616.

    Article  CAS  Google Scholar 

  9. Streckfuss-Bömeke, K., Vlasov, A., Hülsmann, S., Yin, D., Nayernia, K., Engel, E., et al. (2009). Generation of functional neurons and glia from multipotent adult mouse germ-line stem cells. Stem Cell Research, 2, 139–154.

    Article  Google Scholar 

  10. Aditya, G. S., & Chakrabarty, A. (2007). Multiple sclerosis and demyelination. Current Diagnostic Pathology, 13, 193–202.

    Article  Google Scholar 

  11. Kotter, M. R., Setzu, A., Sim, F. J., Van Rooijen, N., & Franklin, R. J. (2001). Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia, 35(3), 204–212.

    Article  CAS  Google Scholar 

  12. Woodruff, R., & Franklin, R. (1999). Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: a comparative study. Glia, 25, 216–228.

    Article  CAS  Google Scholar 

  13. Yaldizli, O., Atefy, R., Gass, A., Sturm, D., Glassl, S., Tettenborn, B., et al. (2010). Corpus callosum index and long-term disability in multiple sclerosis patients. Journal of Neurology, 257, 1256–1264.

    Article  Google Scholar 

  14. Nazm Bojnordi, M., Movahedin, M., Tiraihi, T., & Javan, M. (2013). Alteration in genes expression patterns during in vitro differentiation of mouse spermatogonial cells into neuroepithelial like cells. Cytotechnology, 65(1), 97–104.

    Article  CAS  Google Scholar 

  15. Sherafat, M. A., Heibatollahi, M., Mongabadi, S., Moradi, F., Javan, M., & Ahmadiani, (2012). A electromagnetic field stimulation potentiates endogenous myelin repair by recruiting subventricular neural stem cells in an experimental model of white matter demyelination. Journal of Molecular Neuroscience, 48, 144–153.

    Article  CAS  Google Scholar 

  16. Mozafari, S., Sherafat, M. A., Javan, M., Mirnajafi-Zadeh, J., & Tiraihi, T. (2010). Visual evoked potentials and MBP gene expression implyendogenous myelin repair in adult rat optic nerve and chiasma following local lysolecithin induced demyelination. Brain Research, 1351, 50–56.

    Article  CAS  Google Scholar 

  17. Guan, K., Nayernia, K., Maier, L. S., Wagner, S., Dressel, R., Lee, J. H., et al. (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 440(7088), 1199–1203.

    Article  CAS  Google Scholar 

  18. Hasenfuss, G. (2007). Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circulation Research, 100, 1615–1625.

    Article  Google Scholar 

  19. De Rooij, D. J., & Mizrak, C. (2008). Deriving multipotent stem cells from mouse spermatogonial stem cells: A new tool for developmental and clinical research. Development, 135(430), 2207–2213.

    Article  Google Scholar 

  20. Annapurna, A., Krishna, K. V., Murali Mohan Rao, P., Someswara Rao, K., & Rajasekhar, J. (2002). Multiple sclerosis: The disease and its treatment. Indian Journal of Pharmacology, 34, 3–15.

    Google Scholar 

  21. Caon, C., Saunders, C., Smrtka, J., Baxter, N., & Shoemaker, J. (2010). Injectable disease-modifying therapy for relapsing-remitting multiple sclerosis: A review of adherence data. Journal of Neuroscience Nursing, 42(5), S5–S9.

    Article  Google Scholar 

  22. Chandran, S., Hunt, D., Joannides, A., Zhao, C., Compston, A., & Franklin, R. J. (2008). Myelin repair: The role of stem and precursor cells in multiple sclerosis. Philosophical transactions of the Royal Society of London Series B Biological Sciences, 363(1489), 171–183.

    Article  CAS  Google Scholar 

  23. Stangel, M., & Hartung, H. P. (2002). Remyelinating strategies for the treatment of multiple sclerosis. Progress in Neurobiology, 68(5), 361–376.

    Article  CAS  Google Scholar 

  24. Maden, M., Sonneveld, E., van der Saag, P. T., & Gale, E. (1998). The distribution of endogenous retinoic acid in the chick embryo: Implications for developmental mechanisms. Development, 125, 4133–4144.

    CAS  Google Scholar 

  25. Tirotta, E., Carbajal, K. S., Schaumburg, C. S., Whitman, L., & Lane, T. E. (2010). Cell replacement therapies to promote remyelination in a viral model of demyelination. Journal of Neuroimmunology, 224(1–2), 101–107.

    Article  CAS  Google Scholar 

  26. Blakemore, W. F., Chari, D. M., Gilson, J. M., & Crang, A. J. (2002). Modelling large areas of demyelination in the rat reveals the potential and possible limitations of transplanted glial cells for remyelination in the CNS. Glia, 38(2), 155–168.

    Article  CAS  Google Scholar 

  27. Chari, D. M., & Blakemore, W. F. (2002). New insights into remyelination failure in multiple sclerosis: Implications for glial cell transplantation. Multiple Sclerosis, 8(4), 271–277.

    Article  CAS  Google Scholar 

  28. Mardanpour, P., Guan, K., Nolte, J., Lee, J., Hasenfuss, G., Engel, W., et al. (2008). Potency of germ cells and its relevance for regenerative medicine. Journal of Anatomy, 213(26–29), 457.

    Google Scholar 

Download references

Acknowledgments

This research is derived from PhD thesis of Anatomical science with funding support from Medical Faculty of Tarbiat Modares University and Iranian council of stem cell technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Nazm Bojnordi or M. Movahedin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazm Bojnordi, M., Movahedin, M., Tiraihi, T. et al. Oligoprogenitor Cells Derived from Spermatogonia Stem Cells Improve Remyelination in Demyelination Model. Mol Biotechnol 56, 387–393 (2014). https://doi.org/10.1007/s12033-013-9722-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9722-0

Keywords

Navigation