Skip to main content
Log in

A High-Throughput Screening Method to Reengineer DNA Polymerases for Random Mutagenesis

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A screening system for directed evolution of DNA polymerases employing a fluorescent Scorpion probe as a reporter has been developed. The screening system has been validated in a directed evolution experiment of a distributive polymerase from the Y-polymerase family (Dpo4 from Sulfolobus solfataricus) which was improved in elongation efficiency of consecutive mismatches. The engineering campaign yielded improved Dpo4 polymerase variants one of which was successfully benchmarked in a sequence saturation mutagenesis experiment especially with regard to the desirable consecutive transversion mutations (>2.5-fold increase in frequency relative to a reference library prepared with Dpo4 WT). The Scorpion probe screening system enables to reengineer polymerases with low processivity and fidelity, and no secondary activities (i.e. exonuclease activity or strand displacement activity) to match demands in diversity generation for directed protein evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Steitz, T. A. (1999). DNA polymerases: Structural diversity and common mechanisms. Journal of Biological Chemistry, 274(25), 17395–17398.

    Article  CAS  Google Scholar 

  2. Blanusa, M., Schenk, A., Sadeghi, H., Marienhagen, J., & Schwaneberg, U. (2010). Phosphorothioate-based ligase-independent gene cloning (PLICing): An enzyme-free and sequence-independent cloning method. Analytical Biochemistry, 406(2), 141–146.

    Article  CAS  Google Scholar 

  3. Dennig, A., Shivange, A. V., Marienhagen, J., & Schwaneberg, U. (2011). OmniChange: The sequence independent method for simultaneous site-saturation of five codons. PLoS One, 6(10), e26222.

    Article  CAS  Google Scholar 

  4. Erlich, H. A. (2013). Development and evolution of PCR. Genetic Engineering & Biotechnology News, 33(7), 32–45.

    Article  Google Scholar 

  5. Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26(10), 1135–1145.

    Article  CAS  Google Scholar 

  6. Thelwell, N., Millington, S., Solinas, A., Booth, J., & Brown, T. (2000). Mode of action and application of scorpion primers to mutation detection. Nucleic Acids Research, 28(19), 3752–3761.

    Article  CAS  Google Scholar 

  7. Wong, T. S., Tee, K. L., Hauer, B., & Schwaneberg, U. (2004). Sequence saturation mutagenesis (SeSaM): A novel method for directed evolution. Nucleic Acids Research, 32(3), e26.

    Article  Google Scholar 

  8. Ohmori, H., Friedberg, E. C., Fuchs, R. P., Goodman, M. F., Hanaoka, F., Hinkle, D., et al. (2001). The Y-family of DNA polymerases. Molecular Cell, 8(1), 7–8.

    Article  CAS  Google Scholar 

  9. Chandani, S., Jacobs, C., & Loechler, E. L. (2010). Architecture of Y-family DNA polymerases relevant to translesion DNA synthesis as revealed in structural and molecular modeling studies. Journal of Nucleic Acids, 2010, 1–20.

    Article  Google Scholar 

  10. McDonald, J. P., Hall, A., Gasparutto, D., Cadet, J., Ballantyne, J., & Woodgate, R. (2006). Novel thermostable Y-family polymerases: Applications for the PCR amplification of damaged or ancient DNAs. Nucleic Acids Research, 34(4), 1102–1111.

    Article  CAS  Google Scholar 

  11. Sale, J. E., Lehmann, A. R., & Woodgate, R. (2012). Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nature Reviews Molecular Cell Biology, 13(3), 141–152.

    Article  CAS  Google Scholar 

  12. Yang, W., & Woodgate, R. (2007). What a difference a decade makes: Insights into translesion DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15591–15598.

    Article  CAS  Google Scholar 

  13. Wong, T. S., Roccatano, D., Zacharias, M., & Schwaneberg, U. (2006). A statistical analysis of random mutagenesis methods used for directed protein evolution. Journal of Molecular Biology, 355(4), 858–871.

    Article  CAS  Google Scholar 

  14. Wong, T. S., Zhurina, D., & Schwaneberg, U. (2006). The diversity challenge in directed protein evolution. Combinatorial Chemistry & High Throughput Screening, 9(4), 271–288.

    Article  CAS  Google Scholar 

  15. Wong, T. S., Roccatano, D., & Schwaneberg, U. (2007). Steering directed protein evolution: Strategies to manage combinatorial complexity of mutant libraries. Environmental Microbiology, 9(11), 2645–2659.

    Article  CAS  Google Scholar 

  16. D’ Abbadie, M., Hofreiter, M., Vaisman, A., Loakes, D., Gasparutto, D., Cadet, J., et al. (2007). Molecular breeding of polymerases for amplification of ancient DNA. Nature Biotechnology, 25(8), 939–943.

    Article  Google Scholar 

  17. Mundhada, H., Marienhagen, J., Scacioc, A., Schenk, A., Roccatano, D., & Schwaneberg, U. (2011). SeSaM-Tv-II generates a protein sequence space that is unobtainable by epPCR. ChemBioChem, 12(10), 1595–1601.

    Article  CAS  Google Scholar 

  18. Wong, T. S., Roccatano, D., & Schwaneberg, U. (2007). Are transversion mutations better? A Mutagenesis Assistant Program analysis on P450 BM-3 heme domain. Biotechnology Journal, 2(1), 133–142.

    Article  CAS  Google Scholar 

  19. Obeid, S., Schnur, A., Gloeckner, C., Blatter, N., Welte, W., Diederichs, K., et al. (2011). Learning from directed evolution: Thermus aquaticus DNA polymerase mutants with translesion synthesis activity. ChemBioChem, 12(10), 1574–1580.

    Article  CAS  Google Scholar 

  20. Söte, S., Kleine, S., Schlicke, M., & Brakmann, S. (2011). Directed evolution of an error-prone T7 DNA polymerase that attenuates viral replication. ChemBioChem, 12(10), 1551–1558.

    Article  Google Scholar 

  21. Ghadessy, F. J., Ong, J. L., & Holliger, P. (2001). Directed evolution of polymerase function by compartmentalized self-replication. Proceedings of the National Academy of Sciences of the United States of America, 98(8), 4552–4557.

    Article  CAS  Google Scholar 

  22. Camps, M., & Loeb, L.A. (2003). Use of Pol I-deficient E. coli for functional complementation of DNA polymerase. In Directed enzyme evolution (Bd. Vol. 230, pp. 11–18). Totowa, NJ: Humana Press.

  23. Brakmann, S., & Grzeszik, S. (2001). An error-prone T7 RNA polymerase mutant generated by directed evolution. ChemBioChem, 2(3), 212–219.

    Article  CAS  Google Scholar 

  24. Nyrén, P. (1987). Enzymatic method for continuous monitoring of DNA polymerase activity. Analytical Biochemistry, 167(2), 235–238.

    Article  Google Scholar 

  25. Fabbrizzi, L., Marcotte, N., Stomeo, F., & Taglietti, A. (2002). Pyrophosphate detection in water by fluorescence competition assays: Inducing selectivity through the choice of the indicator. Angewandte Chemie International Edition, 41(20), 3811–3814.

    Article  CAS  Google Scholar 

  26. Credo, G. M., Su, X., Wu, K., Elibol, O. H., Liu, D. J., Reddy, B., et al. (2012). Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices. The Analyst, 137(6), 1351–1355.

    Article  CAS  Google Scholar 

  27. Orlando, C., Pinzani, P., & Pazzagli, M. (1998). Developments in quantitative PCR. Clinical Chemistry and Laboratory Medicine, 36(5), 255–269.

    Article  CAS  Google Scholar 

  28. Whitcombe, D., Theaker, J., Guy, S. P., Brown, T., & Little, S. (1999). Detection of PCR products using self-probing amplicons and fluorescence. Nature Biotechnology, 17(8), 804–807.

    Article  CAS  Google Scholar 

  29. Carters, R., Ferguson, J., Gaut, R., Ravetto, P., Thelwell, N., & Whitcombe, D. (2008). Design and use of scorpions fluorescent signaling molecules. In A. Marx & O. Seitz (Hrsg.), Molecular beacons: Signalling nucleic acid probes, methods, and protocols (pp. 99–115). Totowa, NJ: Humana Press.

  30. Lan Tee, K., & Schwaneberg, U. (2007). Directed evolution of oxygenases: Screening systems, success stories and challenges. Combinatorial Chemistry & High Throughput Screening, 10(3), 197–217.

    Article  Google Scholar 

  31. Pavelka, A., Chovancova, E., & Damborsky, J. (2009). HotSpot Wizard: A web server for identification of hot spots in protein engineering. Nucleic Acids Research, 37, 376–383.

    Article  Google Scholar 

  32. Marchler-Bauer, A., Lu, S., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., et al. (2011). CDD: A Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Research, 39, 225–229.

    Article  Google Scholar 

  33. Wong, T. S., Roccatano, D., Loakes, D., Tee, K. L., Schenk, A., Hauer, B., et al. (2008). Transversion-enriched sequence saturation mutagenesis (SeSaM-Tv+): A random mutagenesis method with consecutive nucleotide exchanges that complements the bias of error-prone PCR. Biotechnology Journal, 3(1), 74–82.

    Article  CAS  Google Scholar 

  34. Creighton, S., Bloom, L. B., & Goodman, M. F. (1995). Gel fidelity assay measuring nucleotide misinsertion, exonucleolytic proofreading, and lesion bypass efficiencies. In J.L. Campbell (Hrsg.), Methods in enzymology (Bd. Vol. 262, pp. 232–256). New York: Academic Press.

  35. Ruff, A. J., Dennig, A., & Schwaneberg, U. (2013). To get what we aim for: Progress in diversity generation methods. FEBS Journal, 280, 2961–2978.

    Article  CAS  Google Scholar 

  36. Solinas, A., Brown, L. J., McKeen, C., Mellor, J. M., Nicol, J., Thelwell, N., et al. (2001). Duplex Scorpion primers in SNP analysis and FRET applications. Nucleic Acids Research, 29(20), E96.

    Article  CAS  Google Scholar 

  37. Boudsocq, F., Iwai, S., Hanaoka, F., & Woodgate, R. (2001). Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): An archaeal DinB-like DNA polymerase with lesion-bypass properties akin to eukaryotic pol{eta}. Nucleic Acids Research, 29(22), 4607–4616.

    Article  CAS  Google Scholar 

  38. Ling, H., Boudsocq, F., Woodgate, R., & Yang, W. (2001). Crystal structure of a Y-family DNA polymerase in action: A mechanism for error-prone and lesion-bypass replication. Cell, 107(1), 91–102.

    Article  CAS  Google Scholar 

  39. Boudsocq, F., Kokoska, R. J., Plosky, B. S., Vaisman, A., Ling, H., Kunkel, T. A., et al. (2004). Investigating the role of the little finger domain of Y-family DNA polymerases in low fidelity synthesis and translesion replication. The Journal of Biological Chemistry, 279(31), 32932–32940.

    Article  CAS  Google Scholar 

  40. Wang, Y., Arora, K., & Schlick, T. (2006). Subtle but variable conformational rearrangements in the replication cycle of Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) may accommodate lesion bypass. Protein Science, 15(1), 135–151.

    Article  Google Scholar 

  41. Vaisman, A., Ling, H., Woodgate, R., & Yang, W. (2005). Fidelity of Dpo4: Effect of metal ions, nucleotide selection and pyrophosphorolysis. The EMBO Journal, 24(17), 2957–2967.

    Article  CAS  Google Scholar 

  42. Wu, Y., Wilson, R. C., & Pata, J. D. (2011). The Y-family DNA polymerase Dpo4 uses a template slippage mechanism to create single-base deletions. Journal of Bacteriology, 193(10), 2630–2636.

    Article  CAS  Google Scholar 

  43. Miyazaki, K. (2011). MEGAWHOP cloning: A method of creating random mutagenesis libraries via megaprimer PCR of whole plasmids. Methods in Enzymology, 498, 399–406.

    Article  CAS  Google Scholar 

  44. Studier, W. (2005). Protein production by auto-induction in high density shaking cultures. Protein Expression and Purification, 41(1), 207–234.

    Article  CAS  Google Scholar 

  45. Abramoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11(7), 36–42.

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Alexander Schenk, Andreea Scacoic, Marcus Schallmey and Dr. Hemanshu Mundhada for the technical support and fruitful scientific discussions. We also thank the Biokatalyse2021 Cluster and the German Ministry of Education and Research (BMBF) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schwaneberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kardashliev, T., Ruff, A.J., Zhao, J. et al. A High-Throughput Screening Method to Reengineer DNA Polymerases for Random Mutagenesis. Mol Biotechnol 56, 274–283 (2014). https://doi.org/10.1007/s12033-013-9706-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9706-0

Keywords

Navigation