Skip to main content
Log in

Convergence of Goals: Phylogenetical, Morphological, and Physiological Characterization of Tolerance to Drought Stress in Tall Fescue (Festuca arundinacea Schreb.)

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study is to find Iranian tall fescue accessions that tolerate drought stress and investigation on phylogenetical, morphological, and physiological characterization of them. For this propose, inter-simple sequence repeats (ISSR) markers were used to examine the genetic variability of accessions from different provinces of Iran. Of 21 primers, 20 primers generated highly reproducible fragments. Using these primers, 390 discernible DNA fragments were produced with 367 (93.95 %) being polymorphic. The polymorphic information content (PIC) values ranged from 0.948 to 0.976, with a mean PIC value of 0.969. Probability identity (PI) and discriminating power (D = 1 − PI) among the primers ranged from 0.001 to 0.004 and 0.998 to 0.995, respectively. A binary qualitative data matrix was constructed. Data analyses were performed using the NTSYS software and the similarity values were used to generate a dendrogram via UPGMA. To study the drought stress, plants were irrigated at 25 % FC condition for three times. Fresh leaves were collected to measure physiological characters including: superoxide dismutase, catalase, and peroxidase activities and proline and total chlorophyll content at two times, before and after stress application. Relative water content, fresh and dry weight ratio, survival percentage, and visual quality were evaluated after stress. Morphological and physiological characters were assessed in order to classify accessions as either tolerant or sensitive using Ward’s method of Hierarchical cluster analysis in SPSS software. The results of present study demonstrated that the ISSR markers are useful for studying tall fescue genetic diversity. Convergence of morphological and physiological characterizations during drought stress and phylogenetic relationship results showed that accessions can be grouped into four clusters; drought-tolerant accessions that collected from west of Iran, drought-tolerant accessions collected from northwest of Iran, drought semi-tolerant accessions collected from center of Iran, and drought-sensitive accessions collected from north of Iran. Data presented could be used to classify the tall fescue accessions based on suitability of cultivation in the regions studied or the regions with the similar environmental condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Christians, N. (2004). Fundamentals of turfgrass management. Hoboken, NJ: Wiley. 359.

    Google Scholar 

  2. Sheffer, K. M., Dunn, J. H., & Minner, D. D. (1987). Summer drought responses and rooting depth of three cool-season turfgrass. HortScience, 22, 296–297.

    Google Scholar 

  3. Barnes, R. F. (1990). Importance and problems of tall fescue. In M. J. Kasperbauer (Ed.), Biotechnology in tall Fescue improvement (pp. 1–12). Boca Raton, FL: CRC.

    Google Scholar 

  4. Khayyam-Nekouei, M. (2001). Germplasm collection and molecular detection of endophytic fungi in Iranian tall fescue (Festuca arundinacea Schreb). Ph.D. Thesis, University of Putra, Malaysia.

  5. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6231–6235.

    Article  Google Scholar 

  6. Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20, 176–183.

    Article  CAS  Google Scholar 

  7. Gupta, P. K., & Varshney, R. K. (2000). The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, 113, 163–185.

    Article  CAS  Google Scholar 

  8. Wu, K., Jones, R., Dannaeberger, L., & Scolnik, P. A. (1994). Detection of microsatellite polymorphisms without cloning. Nucleic Acids Research, 22, 3257–3258.

    Article  CAS  Google Scholar 

  9. Meyer, W., Michell, T. G., Freedman, E. Z., & Vilgalys, R. (1993). Hybridization probes for conventional DNA fingerprinting used as single primers in polymerase chain reaction to distinguish strain of Cryptococcus neoformans. Journal of Clinical Biology, 31, 2274–2280.

    CAS  Google Scholar 

  10. Kantelry, R. V., Zeng, X., Bennetzen, J. L., & Zehr, B. E. (1995). Assessment of genetic diversity in dent and popcorn (Zea mays L.) inbred lines using inter-simple sequence repeat (ISSR) amplification. Molecular Breeding, 1, 365–373.

    Article  Google Scholar 

  11. Sankar, A. A., & Moore, G. A. (2001). Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of the genetic linkage map. Theoretical and Applied Genetics, 102, 206–214.

    Article  CAS  Google Scholar 

  12. Motawei, M. I., Al-Doss, A. A., & Moustafa, K. A. (2007). Genetic diversity among selected wheat lines differing in heat tolerance using molecular markers. Journal of Food and Agricultural Environment, 5, 180–183.

    CAS  Google Scholar 

  13. Wang, L. L., Zhao, L., Gong, Y., Wang, M., Chen, L. M., Yang, J. L., et al. (2008). DNA fingerprinting and genetic diversity analysis of late-bolting radish cultivars with RAPD, ISSR and SRAP markers. Scientia Horticulturae, 116, 240–247.

    Article  Google Scholar 

  14. Pivoriene, O., & Pasakinskiene, I. (2008). Inter-simple sequence repeat (ISSR) loci mapping in the genome of perennial ryegrass. Biologiae, 54, 17–21.

    Article  CAS  Google Scholar 

  15. Al-Humaid, A., Motawei, M. I., Abdalla, M. Y., & Al-Mana, F. (2004). Detection of genetic variation and Fusarium resistance in turfgrass genotyoes using PCR-based markers (ISSR and SCAR). Journal of Food, Agriculture and Environment, 2, 225–229.

    CAS  Google Scholar 

  16. Motawei, M., & AL-Ghumaiz, N. S. (2012). Genetic diversity in some introduced pasture grass cultivars revealed by inter-simple sequence repeats (ISSR) markers. South African Journal of Biotechnology, 11, 3531–3536.

    CAS  Google Scholar 

  17. Xu, W. W., & Sleper, D. A. (1994). Phylogeny of tall fescue and related species using RFLPs. Theoretical and Applied Genetics, 88, 685–690.

    Article  CAS  Google Scholar 

  18. Toker, C., Lluch, C., Tejera, N. A., Serraj, R., & Siddique, K. H. M. (2007). Abiotic stresses. Chickpea breeding and management, 474–496.

  19. Rahimizadeh, M., Habibi, D., Madani, H., Mohammadi, G. N., Mehraban, A., & Sabet, A. M. (2007). The effect of micronutrients on antioxidant enzymes metabolism in sunflower (Helianthus annuus L.) under drought stress. HELIA, 30, 167–174.

    Article  Google Scholar 

  20. Baby, J., & Jini, D. (2011). Development of salt stress- tolerant plants by gene manipulation of antioxidant enzymes. Asian Journal of Agricultural Research, 5, 17–27.

    Article  Google Scholar 

  21. Barnabas, B., Jager, K., & Feher, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31, 11–38.

    CAS  Google Scholar 

  22. Fleury, D., Jefferies, S., Kuchel, H., & Langridge, P. (2010). Genetic and genomic tools to improve drought tolerance in wheat. Journal of Experimental Botany, 61, 3211–3222.

    Article  CAS  Google Scholar 

  23. Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutases: Improved assays and an assay predictable to acrylamide gels. Annals of Biochemesitry, 44, 276–287.

    Article  CAS  Google Scholar 

  24. Dhindsa, R. S., Plumb-Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32, 93–101.

    Article  CAS  Google Scholar 

  25. Chance, B., & Maehly, A. C. (1995). Assay of catalase and peroxidase. In S. P. Culowic & N. O. Kaplan (Eds.), Methods in enzymology (Vol. 2, pp. 764–765). New York: Academic.

    Google Scholar 

  26. Rohlf, F. J. (1998). NTSYSpc: Numerical taxonomy and multivariate analysis system. Version 2.02. New York: Exeter Publications.

    Google Scholar 

  27. Rohlf, F. J. (1998). NTSYSpc-Numerical taxonomy and multivariate analysis system (Version 2.0). User guide. New York: Applied Biostatistics Inc.

    Google Scholar 

  28. Ott, J. (1988–2001). Program Het version 1.8. Utility programs for analysis of genetic linkage. Rockefeller University, New York. ftp://linkage.rockefeller.edu/software/utilities/.

  29. Oliviera, E. J., Padua, J. G., Zucchi, M. I., & Venkovsky, R. (2006). Origin, evolution and genome distribution of microsatellites. Biology, 29, 294–307.

    Google Scholar 

  30. Pollefeys, P., & Bousquet, J. (2003). Molecular genetic diversity of the French-American grapevine hybrids cultivated in North America. Genome, 46, 1037–1048.

    Article  CAS  Google Scholar 

  31. Tessier, C., David, J., This, P., Boursiquot, J. M., & Charrier, A. (1999). Optimization of the choice of molecular markers for varietal identification in Vitis viniferia L. Theoretical and Applied Genetics, 98, 171–177.

    Article  CAS  Google Scholar 

  32. Sivaprakash, K. R., Prasanth, S. R., Mohanty, B. P., & Parida, A. A. (2004). Genetic diversity of black gram landraces as evaluated by AFLP markers. Current Science, 86, 1411–1415.

    Google Scholar 

  33. Majidi, M. M., Mirlohi, A. F., & Sayed- Tabatabaei, B. E. (2006). AFLP analyses of genetic variation in Iranian tall fescue accessions. Pakistan Journal of Biological Science, 9, 1869–1876.

    Article  CAS  Google Scholar 

  34. Casler, M. D., & Duncan, R. R. (2003). Turfgrass biology, genetics, and breeding (p. 367). Hoboken, NJ: Wiley.

    Google Scholar 

  35. Halasz, J., Pedryc, A., & Hegedus, A. (2007). Origin and dissemination of the pollen-part mutated SC-haplotype that confers self-compatibility in apricot (Prunus armeniaca). New Phytology, 176, 793–803.

    Article  Google Scholar 

  36. Milatovic, D., & Nikolic, D. (2007). Analysis of self-(in) compatibility in apricot cultivars using fluorescence microscopy. Journal of Horticultural Science & Biotechnology, 82, 170–174.

    Google Scholar 

  37. Pickup, M., & Young, A. G. (2008). Population size, self-incompatibility and genetic rescue in diploid and tetraploid races of Rutidosis leptorrhynchoides (Asteraceae). Heredity, 100, 268–274.

    Article  CAS  Google Scholar 

  38. Byers, D. L., & Meagher, T. R. (1992). Mate availability in small populations of plant species with homomorhpic sporophytic self-incompatibility. Heredity, 68, 353–359.

    Article  Google Scholar 

  39. Young, A. G., Brown, A. H. D., Murray, B. G., Thrall, P. H., & Miller, C. H. (2000). Genetic erosion, restricted mating and reduced viability in fragmented populations of the endangered grassland herb Rutidosis leptorrhynchoides. In A. G. Young & G. M. Clarke (Eds.), Genetics, demography and viability of fragmented populations (pp. 335–359). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  40. Templeton, W. C, Jr, Mott, G. O., & Bula, R. J. (1961). Some effects of temperature and light on growth and flowering of tall fescue, Festua arundinaceae Scherb. II. Floral development. Crop Science, 1, 283–286.

    Article  Google Scholar 

  41. Hicks, D. H., & Mitchell, K. J. (1968). Flowering in pasture grasses. 1. Interactions of day length and temperature on inflorescence emergence for Festuca arundinacea Schreb. Variety Manade. New Zealand Journal of Botany, 6, 86–93.

    Article  Google Scholar 

  42. Goodacre, R., Shann, B., Gilbert, R. J., Timmins, E. M., & McGovern, A. C. (2000). Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Annals of Chemistry, 72, 119–127.

    Article  CAS  Google Scholar 

  43. Bai, L. P., Sui, F. G., Ge, T. D., Sun, Z. H., Lu, Y. Y., & Zhou, G. S. (2006). Effect of soil drought stress on leaf water statu.s, membrane permeability and enzymatic antioxidant system of maize. Pedosphere, 16, 326–332.

    Article  CAS  Google Scholar 

  44. Ozkur, O., Ozdemir, F., Bor, M., & Turkan, I. (2009). Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environmental and Experimental Botany, 66, 487–495.

    Article  CAS  Google Scholar 

  45. Nayyar, H., & Gupta, D. (2006). Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environmental and Experimental Botany, 58, 106–113.

    Article  CAS  Google Scholar 

  46. Wang, W. X., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218, 1–14.

    Article  CAS  Google Scholar 

  47. Shao, H. B., Liang, Z. S., & Shao, M. A. (2005). Changes of some anti-oxidative enzymes under soil water deficits among 10 wheat genotypes at maturation stage. Colloids and Surface Biointerfaces, 45, 7–13.

    Article  Google Scholar 

  48. Jiang, M. Y., & Zhang, J. H. (2004). Abscisic acid and antioxidant defense in plant cells. Acta Botanica Sinica, 46, 1–9.

    CAS  Google Scholar 

  49. Saba, J., Moghaddam, M., & Ghassemi, K. (2001). Genetic properties of drought resistance indices. Journal of Agricultural Science and Technology, 3, 43–49.

    Google Scholar 

  50. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25, 239–252.

    Article  CAS  Google Scholar 

  51. Capell, T., Bassie, L., & Christou, P. (2004). Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proceedings of the National Academy of Sciences of the United States of America, 101, 9909–9914.

    Article  CAS  Google Scholar 

  52. Gogorcena, Y., Iturbe-Ormaetxe, I., Escuredo, P. R., & Becana, M. (1995). Antioxidant defenses against activated oxygen in pea nodules subjected to water stress. Journal of Plant Physiology, 108, 753–758.

    CAS  Google Scholar 

  53. Bergmann, H., Lippmann, B., Leinhos, V., Tiroke, S., & Machelett, B. (1999). Activation of stress resistance in plants and consequences for product quality. Journal of Applied Botany, 73, 153–161.

    CAS  Google Scholar 

  54. Handa, S., Bressan, R. A., Handa, A. K., Carpita, N. C., & Hasegawa, P. M. (1983). Solutes contribution to osmotic adjustment in cultured plant cells adapt to water stress. Plant Physiology, 73, 834–843.

    Article  CAS  Google Scholar 

  55. Hsiao, T. C. (1973). Plant responses to water stress. Annual Review of Plant Physiology, 24, 519–570.

    Article  CAS  Google Scholar 

  56. Asada, K. (1999). The water–water cycle in chloroplasts: Scavenging of active oxygen and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601–639.

    Article  CAS  Google Scholar 

  57. Van Breusegem, F., Vranovà, E., Dat, J. F., & Inzé, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161, 405–414.

    Article  Google Scholar 

  58. Foyer, C. H., Descourvieres, P., & Kunert, K. J. (1994). Protection against oxygen radicals: An important defense mechanism studied in transgenic plants. Plant, Cell and Environment, 17, 507–523.

    Article  CAS  Google Scholar 

  59. Asada, K. (1997). The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2 scavenging in plants. In J. G. Scandalios (Ed.), Oxidative stress and the molecular biology of antioxidant defenses (pp. 715–735). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Salehi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salehi, M., Salehi, H., Niazi, A. et al. Convergence of Goals: Phylogenetical, Morphological, and Physiological Characterization of Tolerance to Drought Stress in Tall Fescue (Festuca arundinacea Schreb.). Mol Biotechnol 56, 248–257 (2014). https://doi.org/10.1007/s12033-013-9703-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9703-3

Keywords

Navigation