Skip to main content

Advertisement

Log in

An Experimental Approach to the Generation of Human Embryonic Stem Cells Equivalents

  • Reviews
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recently, particular attention has been paid to the human embryonic stem cells (hESC) in the context of their potential application in regenerative medicine; however, ethical concerns prevent their clinical application. Induction of pluripotency in somatic cells seems to be a good alternative for hESC recruitment regarding its potential use in tissue regeneration, disease modeling, and drug screening. Since Yamanaka’s team in 2006 restored pluripotent state of somatic cells for the first time, a significant progress has been made in the area of induced pluripotent stem cells (iPSC) generation. Here, we review the current state of knowledge in the issue of techniques applied to establish iPSC. Somatic cell nuclear transfer, cell fusion, cell extracts reprogramming, and techniques of direct reprogramming are described. Retroviral and lentiviral transduction are depicted as ways of cell reprogramming with the use of integrating vectors. Contrary to them, adenoviruses, plasmids, single multiprotein expression vectors, and PiggyBac transposition systems are examples of non-integrative vectors used in iPSC generation protocols. Furthermore, reprogramming with the delivery of specific proteins, miRNA or small chemical compounds are presented. Finally, the changes occurring during the reprogramming process are described. It is concluded that subject to some limitations iPSC could become equivalents for hESC in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ASC:

Adult stem cells

CSC:

Cancer stem cells

Dox:

Doxycycline

ESC:

Embryonic stem cells

hEC:

Human embryonic carcinoma

hESC:

Human embryonic stem cells

hiPSC:

Human-induced pluripotent stem cells

hp-iPSC:

Human protein-induced pluripotent stem cells

ICM:

Inner cell mass

iPSC:

Induced pluripotent stem cells

mESC:

Mouse embryonic stem cells

MEF:

Mouse embryonic fibroblasts

OSK:

Oct4, Sox2, Klf4

miRNA:

MicroRNA

OSKM:

Oct4, Sox2, Klf4, c-Myc

PB:

PiggyBac

PGC:

Primordial germ cells

PSC:

Pluripotent stem cells

SC:

Stem cells

SCNT:

Somatic cell nuclear transfer

VPA:

Valproic acid

VSEL:

Very small embryonic-like stem cells

References

  1. Patel, M., & Yang, S. (2010). Advances in reprogramming somatic cells to induced pluripotent stem cells. Stem Cell Reviews, 6(3), 367–380.

    CAS  Google Scholar 

  2. Shao, L., & Wu, W. S. (2010). Gene-delivery systems for iPS cell generation. Expert Opinion on Biological Therapy, 10(2), 231–242.

    CAS  Google Scholar 

  3. Lo, B., & Parham, L. (2009). Ethical issues in stem cell research. Endocrine Reviews, 30(3), 204–213.

    Google Scholar 

  4. Young, H. E., & Black, A. C., Jr. (2004). Adult stem cells. The Anatomical Record. Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 276(1), 75–102.

    Google Scholar 

  5. Ferro, F., Spelat, R., D’Aurizio, F., Puppato, E., Pandolfi, M., et al. (2012). Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics. PLoS One, 7(7), e41774. doi:10.1371/journal.pone.0041774.

    CAS  Google Scholar 

  6. Arumugam, S. B., Trentz, O. A., Arikketh, D., Senthinathan, V., Rosario, B., & Mohandas, P. V. (2011). Detection of embryonic stem cell markers in adult human adipose tissue-derived stem cells. Indian Journal of Pathology and Microbiology, 54(3), 501–508.

    Google Scholar 

  7. Pauklin, M., Thomasen, H., Pester, A., Steuhl, K. P., & Meller, D. (2011). Expression of pluripotency and multipotency factors in human ocular surface tissues. Current Eye Research, 36(12), 1086–1097.

    CAS  Google Scholar 

  8. Knoepflera, P. S. (2009). Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative medicine. Stem Cells, 27(5), 1050–1056.

    Google Scholar 

  9. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. Science, 322, 945–949.

    CAS  Google Scholar 

  10. Yang, R., Jiang, M., Kumar, S. M., Xu, T., Wang, F., Xiang, L., et al. (2011). Generation of melanocytes from induced pluripotent stem cells. The Journal of Investigative Dermatology, 131(12), 2458–2466.

    CAS  Google Scholar 

  11. Wobus, M. A., & Boheler, K. R. (2005). Embryonic stem cells: Prospects for developmental biology and cell therapy. Physiological Reviews, 85, 635–678.

    CAS  Google Scholar 

  12. Yamanaka, S., & Blau, H. M. (2010). Nuclear reprogramming to a pluripotent state by three approaches. Nature, 465(7299), 704–712.

    CAS  Google Scholar 

  13. Tannenbaum, S. E., Turetsky, T. T., Singer, O., Aizenman, E., Kirshberg, S., Ilouz, N., et al. (2012). Derivation of xeno-free and GMP-grade human embryonic stem cells—Platforms for future clinical applications. PLoS One, 7(6), e35325. doi:10.1371/journal.pone.0035325.

    CAS  Google Scholar 

  14. Henderson, J. K., Draper, J. S., Baillie, H. S., Fishel, S., Thomson, J. A., Moore, H., et al. (2002). Preimplantation human embros and embryonic stem cell show comparable expression of stage-specific embryonic antigens. Stem Cells, 20, 329–337.

    CAS  Google Scholar 

  15. Muramatsu, T., & Muramatsu, H. (2004). Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconjugate Journal, 21(1–2), 41–45.

    CAS  Google Scholar 

  16. Kudo, T., Kaneko, M., Iwasaki, H., Togayachi, A., Nishihara, S., Abe, K., et al. (2004). Normal embryonic and germ cell development in mice lacking alpha 1,3-fucosyltransferase IX (Fut9) which show disappearance of stage-specific embryonic antigen 1. Molecular and Cellular Biology, 24(10), 4221–4228.

    CAS  Google Scholar 

  17. Wright, A. J., & Andrews, P. W. (2009). Surface marker antigens in the characterization of human embryonic stem cells. Stem Cell Research, 3, 3–11.

    CAS  Google Scholar 

  18. Zhao, W., Ji, X., Zhang, F., Li, L., & Ma, L. (2012). Embryonic stem cell markers. Molecules, 17(6), 6196–6236.

    CAS  Google Scholar 

  19. King, F. W., Ritner, C., Liszewski, W., Kwan, H. C., Pedersen, A., Leavitt, A. D., et al. (2009). Subpopulations of human embryonic stem cells with distinct tissue-specific fates can be selected from pluripotent cultures. Stem Cells and Development, 18(10), 1441–1450.

    CAS  Google Scholar 

  20. Ji, J., Werbowetski-Ogilvie, T. E., Zhong, B., Hong, S. H., & Bhatia, M. (2009). Pluripotent transcription factors possess distinct roles in normal versus transformed human stem cells. PLoS One, 4(11), e8065. doi:10.1371/journal.pone.0008065.

    Google Scholar 

  21. Liu, X., Huang, J., Chen, T., Wang, Y., Xin, S., Li, J., et al. (2008). Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells. Cell Research, 18(12), 1177–1189.

    CAS  Google Scholar 

  22. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947–956.

    CAS  Google Scholar 

  23. Laursen, S. B., Mollgard, K., Olesen, C., Oliveri, R. S., Brøchner, C. B., Byskov, A. G., et al. (2007). Regional differences in expression of specific markers for human embryonic stem cells. Reproductive Biomedicine Online, 15(1), 89–98.

    CAS  Google Scholar 

  24. Wang, X., & Dai, J. (2010). Concise review: Isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells, 28(5), 885–893.

    CAS  Google Scholar 

  25. Boiani, M., & Sholer, H. R. (2005). Regulatory networks in embro-derived pluripotent stem cells. Nature Reviews Molecular Cell Biology, 6(11), 872–884.

    CAS  Google Scholar 

  26. Babaie, Y., Herwig, R., Greber, B., Brink, T. C., Wruck, W., Groth, D., et al. (2007). Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells, 25, 500–510.

    CAS  Google Scholar 

  27. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., et al. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct-4. Cell, 95, 379–391.

    CAS  Google Scholar 

  28. Taranger, C. K., Noer, A., Sorensen, A. L., Hakelien, A. M., Boquest, A. C., & Collas, P. (2005). Induction of dedifferentiation, genome wide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Molecular Biology of the Cell, 16(12), 5719–5735.

    CAS  Google Scholar 

  29. Kim, R. J., & Nam, J. S. (2011). OCT4 expression enhances features of cancer stem cells in a mouse model of breast cancer. Laboratory Animal Research, 27(2), 147–152.

    Google Scholar 

  30. Adachi, K., Suemori, H., Yasuda, S. Y., Nakatsuji, N., & Kawase, E. (2010). Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 15, 455–469.

    CAS  Google Scholar 

  31. Fong, H., Hohenstein, K. A., & Donovan, P. J. (2008). Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells, 26, 1931–1938.

    CAS  Google Scholar 

  32. Guan, H., Xie, L., Leithäuser, F., Flossbach, L., Möller, P., Wirth, T., et al. (2010). KLF4 is a tumor suppressor in B-cell non-Hodgkin lymphoma and in classic Hodgkin lymphoma. Blood, 116(9), 1469–1478.

    CAS  Google Scholar 

  33. McConnell, B. B., & Yang, V. W. (2010). Mammalian Krüppel-like factors in health and diseases. Physiological Reviews, 90(4), 1337–1381.

    CAS  Google Scholar 

  34. McConnell, B. B., Kim, S. S., Yu, K., Ghaleb, A. M., Takeda, N., Manabe, I., et al. (2011). Krüppel-like factor 5 is important for maintenance of crypt architecture and barrier function in mouse intestine. Gastroenterology, 141(4), 1302–1313.

    CAS  Google Scholar 

  35. Nandan, M. O., & Yang, W. V. (2009). The role of Krüppel-like factors in the reprogramming of somatic cells to induced pluripotent stem cells. Histology and Histopathology, 24(10), 1343–1355.

    CAS  Google Scholar 

  36. Jiang, J., Chan, Y. S., Loh, Y. H., Cai, J., Tong, G. Q., Lim, C. A., et al. (2008). A core Klf circuitry regulates self-renewal of embryonic stem cells. Nature Cell Biology, 10(3), 353–360.

    Google Scholar 

  37. Chan, K. K., Zhang, J., Chia, N. Y., Chan, Y. S., Sim, H. S., Tan, K. S., et al. (2009). KLF4 and PBX1 directly regulate NANOG expression in human embryonic stem cells. Stem Cells, 27(9), 2114–2125.

    CAS  Google Scholar 

  38. Jain, A. K., Allton, K., Iacovino, M., Mahen, E., Milczarek, R. J., Zwaka, T. P., et al. (2012). p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biology, 10(2), e1001268. doi:10.1371/journal.pbio.1001268.

    CAS  Google Scholar 

  39. Zhang, W., Geiman, D. E., Shields, J. M., Dang, D. T., Mahatan, C. S., Kaestner, K. H., et al. (2000). The gutenriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. Journal of Chemical Biology, 275, 18391–18398.

    CAS  Google Scholar 

  40. Zhou, Q., Hong, Y., Zhan, Q., Shen, Y., & Liu, Z. (2009). Role for Kruppel-like factor 4 in determining the outcome of p53 response to DNA damage. Cancer Research, 69(21), 8284–8292.

    CAS  Google Scholar 

  41. Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., et al. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature, 460(7259), 1132–1135.

    CAS  Google Scholar 

  42. Martinato, F., Cesaroni, M., Amati, B., & Guccione, E. (2008). Analysis of Myc-induced histone modifications on target chromatin. PLoS One, 3(11), e3650. doi:10.1371/journal.pone.0003650.

    Google Scholar 

  43. Okita, K., & Yamanaka, S. (2011). Induced pluripotent stem cells: Opportunities and challenges. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 366(1575), 2198–2207.

    CAS  Google Scholar 

  44. Cartwright, P., McLean, C., Sheppard, A., Rivett, D., Jones, K., & Dalton, S. (2005). LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 132(5), 885–896.

    CAS  Google Scholar 

  45. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.

    CAS  Google Scholar 

  46. Li, H. Y., Chien, Y., Chen, Y. J., Chen, S. F., Chang, Y. L., Chiang, C. H., et al. (2011). Reprogramming induced pluripotent stem cells in the absence of c-Myc for differentiation into hepatocyte-like cells. Biomaterials, 32(26), 5994–6005.

    CAS  Google Scholar 

  47. Nakagawa, M., Takizawa, N., Narita, M., Ichisaka, T., & Yamanaka, S. (2010). Promotion of direct reprograming by transformation-deficient Myc. PNAS, 107(32), 14152–14157.

    CAS  Google Scholar 

  48. Ralston, A., & Rossant, J. (2010). The genetic of induced pluripotency. Reproduction, 139, 35–44.

    CAS  Google Scholar 

  49. Pan, G., & Thomson, J. A. (2007). Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Research, 17, 42–49.

    CAS  Google Scholar 

  50. Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., et al. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113(5), 631–642.

    CAS  Google Scholar 

  51. Ratajczak, M. Z., Zuba-Surma, E. K., Shin, D.-K., Ratajczak, J., & Kucia, M. (2008). Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Experimental Gerontology, 43(11), 1009–1017.

    CAS  Google Scholar 

  52. Ratajczak, M. Z., Zuba-Surma, E. K., Machalinski, B., Ratajczak, J., & Kucia, M. (2008). Very small embryonic-like (VSEL) stem cells: purification from adult organs, characterization, and biological significance. Stem Cell Reviews, 4(2), 89–99.

    Google Scholar 

  53. Keating, A. (2012). Mesenchymal stromal cells: New directions. Cell Stem Cell, 10(6), 709–716.

    CAS  Google Scholar 

  54. Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., et al. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7(5), 393–395.

    CAS  Google Scholar 

  55. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    CAS  Google Scholar 

  56. Chinen, J., & Buckley, R. H. (2010). Transplantation immunology: Solid organ and bone marrow. Journal of Allergy and Clinical Immunology, 125(2 Suppl 2), S324–S335.

    Google Scholar 

  57. Kimbrel, E. A., & Lu, S. J. (2011). Potential clinical applications for human pluripotent stem cell-derived blood components. Stem Cells International, 2011, 273076. doi:10.4061/2011/273076.

    Google Scholar 

  58. Trounson, A., Thakar, R. G., Lomax, G., & Gibbons, D. (2011). Clinical trials for stem cell therapies. BMC Medicine, 10(9), 52. doi:10.1186/1741-7015-9-52.

    Google Scholar 

  59. Mihaila, S. M., Frias, A. M., Pirraco, R. P., Rada, T., Reis, R. L., Gomes, M. E., et al. (2013). Human adipose tissue-derived SSEA-4 subpopulation multi-differentiation potential towards the endothelial and osteogenic lineages. Tissue Engineering Part A, 19(1–2), 235–246. doi:10.1089/ten.TEA.2012.0092.

    CAS  Google Scholar 

  60. Riekstina, U., Cakstina, I., Parfejevs, V., Hoogduijn, M., Jankovskis, G., Muiznieks, I., et al. (2009). Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Review, 5(4), 378–386.

    CAS  Google Scholar 

  61. Okura, H., Komoda, H., Saga, A., Kakuta-Yamamoto, A., Hamada, Y., Fumimoto, Y., et al. (2010). Properties of hepatocyte-like cell clusters from human adipose tissue-derived mesenchymal stem cells. Tissue Engineering Part C Methods, 16(4), 761–770.

    CAS  Google Scholar 

  62. Ming, G., & Song, H. (2011). Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 70(4), 687–702.

    CAS  Google Scholar 

  63. Dawn, B., Tiwari, S., Kucia, M. J., Zuba-Surma, E. K., Guo, Y., Sanganalmath, S. K., et al. (2008). Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells, 26(6), 1646–1655.

    Google Scholar 

  64. Alison, M. R., & Islam, S. (2009). Attributes of adult stem cells. The Journal of Pathology, 2009(217), 144–160.

    Google Scholar 

  65. Zuba-Surma, E. K., Wojakowski, W., Ratajczak, M. Z., & Dawn, B. (2011). Very small embryonic-like stem cells: Biology and therapeutic potential for heart repair. Antioxidants & Redox Signaling, 15(7), 1821–1834.

    CAS  Google Scholar 

  66. Jorgensen, C., & Noël, D. (2011). Mesenchymal stem cells in osteoarticular diseases. Regenerative Medicine, 6(6 Suppl), 44–51.

    CAS  Google Scholar 

  67. Highfill, S. L., Kelly, R. M., O’Shaughnessy, M. J., Zhou, Q., Xia, L., Panoskaltsis-Mortari, A., et al. (2009). Multipotent adult progenitor cells can suppress graft-versus-host disease via prostaglandin E2 synthesis and only if localized to sites of allopriming. Blood, 114(3), 693–701.

    CAS  Google Scholar 

  68. Laurenti, L., Tarnani, M., Chiusolo, P., Sorà, F., & Sica, S. (2010). Allogeneic transplantation for chronic lymphocytic leukemia. Mediterranean journal of hematology and infectious diseases, 2(2), e2010026. doi:10.4084/MJHID.2010.026.

    Google Scholar 

  69. Broxmeyer, H. E. (2010). Umbilical cord transplantation: Epilogue. Seminars in Hematology, 47(1), 97–103.

    Google Scholar 

  70. Abdulrazzak, H., Moschidou, D., Jones, G., & Guillot, P. V. (2010). Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues. Journal of the Royal Society, Interface, 7(Suppl 6), S689–S706.

    Google Scholar 

  71. Mihu, C. M., Mihu, D., Costin, N., Rus Ciucă, D., Suşman, S., & Ciortea, R. (2008). Isolation and characterization of stem cells from the placenta and the umbilical cord. Romanian Journal of Morphology and Embryology, 49(4), 441–446.

    Google Scholar 

  72. Broxmeyer, H. E. (2010). Cord blood hematopoietic stem cell transplantation. StemBook, The Stem Cell Research Community. doi:10.3824/stembook.1.52.1, StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute; 2008. Available from: http://www.ncbi.nlm.nih.gov/books/NBK27044/.

  73. Musina, R. A., Bekchanova, E. S., Belyavskii, A. V., Grinenko, T. S., & Sukhikh, G. T. (2007). Umbilical cord blood mesenchymal stem cells. Bulletin of Experimental Biology and Medicine, 143(1), 127–131.

    CAS  Google Scholar 

  74. Parolini, O., Alviano, F., Bagnara, G. P., Bilic, G., Bühring, H. J., Evangelista, M., et al. (2008). Concise review: Isolation and characterization of cells from human term placenta: Outcome of the first international workshop on placenta derived stem cells. Stem Cells, 26(2), 300–311.

    Google Scholar 

  75. Díaz-Prado, S., Muiños-López, E., Hermida-Gómez, T., Oreiro, N., Fernández-López, C., & Blanco, F. J. (2011). Human amniotic membrane as an alternative source of stem cells for regenerative medicine. Differentiation, 81, 162–171.

    Google Scholar 

  76. Lee, L., Ueno, M., Van Handel, B., & Mikkola, H. K. (2010). Placenta as a newly identified source of hematopoietic stem cells. Current Opinion in Hematology, 17(4), 313–318.

    Google Scholar 

  77. Davydova, A. (2010). Stem cells in human amniotic fluid. Biological Bulletin, 37(5), 437–445.

    Google Scholar 

  78. D’Alimonte, I., Lannutti, A., Pipino, C., Di Tomo, P., Pierdomenico, L., Cianci, E., et al. (2013). Wnt signaling behaves as a “Master Regulator” in the osteogenic and adipogenic commitment of human amniotic fluid mesenchymal stem cells. Stem Cell Reviews, 9(5), 642–654. doi:10.1007/s12015-013-9436-5.

  79. Rosner, M., Schipany, K., Shanmugasundaram, B., Lubec, G., & Hengstschläger, M. (2012). Amniotic fluid stem cells: Future perspectives. Stem Cells International, 2012, 741810. doi:10.1155/2012/741810.

    Google Scholar 

  80. Pratama, G., Vaghjiani, V., Tee, J. Y., Liu, Y. H., Chan, J., Tan, C., et al. (2011). Changes in culture expanded human amniotic epithelial cells: Implications for potential therapeutic applications. PLoS One, 6(11), e26136. doi:10.1371/journal.pone.0026136.

    CAS  Google Scholar 

  81. Fong, C. Y., Chak, L. L., Biswas, A., Tan, J. H., Gauthaman, K., Chan, W. K., et al. (2011). Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Reviews, 7(1), 1–16. doi:10.1007/s12015-010-9166-x.

    CAS  Google Scholar 

  82. Taghizadeh, R. R., Cetrulo, K. J., & Cetrulo, C. L. (2011). Wharton’s Jelly stem cells: Future clinical applications. Placenta, 32(4), 311–315.

    Google Scholar 

  83. Peng, J., Wang, Y., Zhang, L., Zhao, B., Zhao, Z., Chen, J., et al. (2011). Human umbilical cord Wharton’s jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro. Brain Research Bulletin, 84(3), 235–243.

    Google Scholar 

  84. Hare, J. M., Fishman, J. E., Gerstenblith, G., DiFede Velazquez, D. L., Zambrano, J. P., et al. (2012). Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON randomized trial. The Journal of the American Medical Association, 308(22), 2369–2379.

    CAS  Google Scholar 

  85. Mazzini, L., Mareschi, K., Ferrero, I., Miglioretti, M., Stecco, A., Servo, S., et al. (2012). Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: A long-term safety study. Cytotherapy, 14(1), 56–60.

    Google Scholar 

  86. Zhou, H., Guo, M., Bian, C., Sun, Z., Yang, Z., Zeng, Y., et al. (2010). Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: Clinical report. Biology of Blood and Marrow Transplantation, 16(3), 403–412.

    CAS  Google Scholar 

  87. Nejadnik, H., Hui, J. H., Feng Choong, E. P., Tai, B. C., & Lee, E. H. (2010). Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: An observational cohort study. The American Journal of Sports Medicine, 38(6), 1110–1116.

    Google Scholar 

  88. Venkataramana, N. K., Pal, R., Rao, S. A., Naik, A. L., Jan, M., Nair, R., et al. (2012). Bilateral transplantation of allogenic adult human bone marrow-derived mesenchymal stem cells into the subventricular zone of Parkinson’s disease: A pilot clinical study. Stem Cells International, 2012, 931902. doi:10.1155/2012/931902.

    CAS  Google Scholar 

  89. Fischer-Rasokat, U., Assmus, B., Seeger, F. H., Honold, J., Leistner, D., Fichtlscherer, S., et al. (2009). A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy: Final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy. Circulation: Heart Failure, 2(5), 417–423.

    CAS  Google Scholar 

  90. Houtgraaf, J. H., den Dekker, W. K., van Dalen, B. M., Springeling, T., de Jong, R., van Geuns, R. J., et al. (2012). First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. Journal of the American College of Cardiology, 59(5), 539–540.

    Google Scholar 

  91. Zhang, Z., Lin, H., Shi, M., Xu, R., Fu, J., Lv, J., et al. (2012). Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. Journal of Gastroenterology and Hepatology, 27(Suppl. 2), 112–120.

    CAS  Google Scholar 

  92. Hu, J., Yu, X., Wang, Z., Wang, F., Wang, L., Gao, H., et al. (2013). Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocrine Journal, 60(3), 347–357.

    CAS  Google Scholar 

  93. Rizzino, A. (2007). A challenge for regenerative medicine: Proper genetic programming, not cellular mimicry. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 236(12), 3199–3207.

    Google Scholar 

  94. Christen, B., Robles, V., Raya, M., Paramonov, I., & Belmonte, J. C. I. (2010). Regeneration and reprogramming compared. BMC Biology, 8, 5. doi:10.1186/1741-7007-8-5.

    Google Scholar 

  95. Sugomito, K., Gordon, S. P., & Meyerowitz, E. M. (2011). Regeneration in plants and animals: Dedifferentiation, or just differentiation? Trends in Cell Biology, 21(4), 212–218.

    Google Scholar 

  96. Red-Horse, K., Ueno, H., Weissman, I. L., & Krasnow, M. A. (2010). Coronary arteries form by developmental reprogramming of venous cells. Nature, 464(7288), 549–553.

    CAS  Google Scholar 

  97. Nakagawa, T., Sharma, M., Nobeshima, Y., Braun, R. E., & Yoshida, S. (2010). Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science, 328(5974), 62–67.

    CAS  Google Scholar 

  98. Li, W. C., Rukstalls, M., Nishimura, W., Tchipashvili, V., Habener, J. F., Sharma, A., et al. (2010). Activation of pancreatic-duct-derived progenitor cells during pancreas regeneration in adult rats. Journal of Cell Science, 123, 2792–2802.

    CAS  Google Scholar 

  99. Zheng, Y., Begum, S., Zhang, C., Fleming, K., Masumura, C., Zhang, M., et al. (2011). Increased BrdU incorporation reflecting DNA repair, neuronal de-differentiation or possible neurogenesis in the adult cochlear nucleus following bilateral cochlear lesions in the rat. Experimental Brain Research, 210, 477–487.

    Google Scholar 

  100. Ono, H., Oki, Y., Bono, H., & Kano, K. (2011). Gene expression profiling in multipotent DFAT cells derived from mature adipocytes. Biochemical and Biophysical Research Communications, 407(3), 562–567.

    CAS  Google Scholar 

  101. Shen, J. F., Sugawara, A., Yamashita, J., Ogura, H., & Sato, S. (2011). Dedifferentiated fat cells: An alternative source of adult multipotent cells from the adipose tissues. International Journal of Oral Science, 3(3), 117–124.

    Google Scholar 

  102. Krause, D., & Cantley, L. G. (2005). Bone marrow plasticity revisited: Protection or differentiation in the kidney tubule? The Journal of Clinical Investigation, 115, 1705–1708.

    CAS  Google Scholar 

  103. Chen, Y., Wong, P. P., Sjeklocha, L., Steer, C. J., & Sahin, M. B. (2012). Mature hepatocytes exhibit unexpected plasticity by direct dedifferentiation into liver progenitor cells in culture. Hepatology, 55(2), 563–574.

    CAS  Google Scholar 

  104. Shoshani, O., & Zipori, D. (2011). Mammalian cell dedifferentation as a possible outcome of stress. Stem Cell Reviews, 7, 488–493.

    Google Scholar 

  105. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    CAS  Google Scholar 

  106. Singh, U., Quintanilla, R. H., Grecian, S., Gee, K. R., Rao, M. S., & Lakshmipathy, U. (2012). Novel live alkaline phosphatase substrate for identification of pluripotent stem cells. Stem Cell Reviews, 8(3), 1021–1029.

    Google Scholar 

  107. Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.

    CAS  Google Scholar 

  108. All, A. H., Bazley, F. A., Gupta, S., Pashai, N., Hu, C., Pourmorteza, A., et al. (2012). Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury. PLoS One, 7(10), e47645. doi:10.1371/journal.pone.0047645.

    CAS  Google Scholar 

  109. Shiraki, N., Yamazoe, T., Qin, Z., Ohgomori, K., Mochitate, K., Kume, K., et al. (2011). Efficient differentiation of embryonic stem cells into hepatic cells in vitro using a feeder-free basement membrane substratum. PLoS One, 6(8), e24228. doi:10.1371/journal.pone.0024228.

    CAS  Google Scholar 

  110. Wang, D., Morales, J. E., Calame, D. G., Alcorn, J. L., & Wetsel, R. A. (2010). Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Molecular Therapy, 18(3), 625–634.

    Google Scholar 

  111. Trounson, A. (2006). The production and directed differentiation of human embryonic stem cells. Endocrine Reviews, 27(2), 208–219.

    Google Scholar 

  112. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    CAS  Google Scholar 

  113. Martins-Taylor, K., & Xu, R. H. (2012). Concise review: Genomic stability of human induced pluripotent stem cells. Stem Cells, 30(1), 22–27.

    CAS  Google Scholar 

  114. Chin, M. H., Mason, M. J., Xie, W., Volinia, S., Singer, M., Peterson, C., et al. (2009). Induced pluripotent stem cells and embryonic stem cell are distinguished by gene expression signatures. Cell Stem Cell, 5(1), 111–123.

    CAS  Google Scholar 

  115. Song, B., Smink, A. M., Jones, C. V., Callaghan, J. M., Firth, S. D., Bernard, C. A., et al. (2012). The directed differentiation of human iPS cells into kidney podocytes. PLoS One, 7(9), e46453. doi:10.1371/journal.pone.0046453.

    CAS  Google Scholar 

  116. Cai, J., Yang, M., Poremsky, E., Kidd, S., Schneider, J. S., & Iacovitti, L. (2010). Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells and Development, 19(7), 1017–1023. doi:10.1089/scd.2009.0319.

    CAS  Google Scholar 

  117. Si-Tayeb, K., Noto, F. K., Nagaoka, M., Li, J., Battle, M. A., Duris, C., et al. (2010). Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology, 51(1), 297–305.

    CAS  Google Scholar 

  118. Wang, S., Bates, J., Li, X., Schanz, S., Chandler-Militello, D., Levine, C., et al. (2013). Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell, 12(2), 252–264. doi:10.1016/j.stem.2012.12.002.

    CAS  Google Scholar 

  119. Li, Y., Tsai, Y. T., Hsu, C. W., Erol, D., Yang, J., Wu, W. H., et al. (2012). Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Molecular Medicine, 18, 1312–1319.

    CAS  Google Scholar 

  120. Chamberlain, S. J., Chen, P. F., Ng, K. Y., Bourgois-Rocha, F., Lemtiri-Chlieh, F., Levine, E. S., et al. (2010). Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proceedings of the National Academy of Sciences of the United States of America, 107(41), 17668–17673.

    CAS  Google Scholar 

  121. Ebert, A. D., Yu, J., & Rose, F. F., Jr. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457, 277–280.

    CAS  Google Scholar 

  122. Chun, Y. S., Chaudhari, P., & Jang, Y. Y. (2010). Applications of patient-specific induced pluripotent stem cells; focused on disease modeling, drug screening and therapeutic potentials for liver disease. International Journal of Biological Sciences, 6(7), 796–805.

    CAS  Google Scholar 

  123. Stadtfeld, M., & Hochedlinger, K. (2010). Induced pluripotency: History, mechanisms, and applications. Genes & Development, 24, 2239–2263.

    CAS  Google Scholar 

  124. Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134, 877–886.

    CAS  Google Scholar 

  125. Marchetto, M. C., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., et al. (2010). A model for neural development and treatment of rett syndrome using human induced pluripotent stem cells. Cell, 143, 527–539.

    CAS  Google Scholar 

  126. Carvajal-Vergara, X., Sevilla, A., D’Souza, S. L., Ang, Y. S., Schaniel, C., Lee, D. F., et al. (2010). Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature, 465, 808–812.

    CAS  Google Scholar 

  127. Raya, A., Rodríguez-Pizà, I., Guenechea, G., Vassena, R., Navarro, S., Barrero, M. J., et al. (2009). Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 460(7251), 53–59.

    CAS  Google Scholar 

  128. Liao, J., Wu, Z., Wang, Y., Cheng, L., Cui, C., Gao, Y., et al. (2008). Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Research, 18(5), 600–603.

    CAS  Google Scholar 

  129. Hochedlinger, K., & Plath, K. (2009). Epigenetic reprogramming and induced pluripotency. Development, 136(4), 509–523.

    CAS  Google Scholar 

  130. Aasen, T., Raya, A., Barrero, M. J., Garreta, E., Consiglio, A., Gonzalez, F., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26, 1276–1284.

    CAS  Google Scholar 

  131. Zhao, H. X., Li, Y., Jin, H. F., Xie, L., Liu, C., Jiang, F., et al. (2010). Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/SOX2/NANOG. Differentiation, 80(2–3), 123–129.

    CAS  Google Scholar 

  132. Zhou, T., Benda, C., Dunzinger, S., Huang, Y., Ho, J. C., Yang, J., et al. (2012). Generation of human induced pluripotent stem cells from urine samples. Nature Protocols, 7(12), 2080–2089.

    CAS  Google Scholar 

  133. Panopoulos, A. D., Ruiz, S., Yi, F., Herrerías, A., Batchelder, E. M., & Izpisua Belmonte, J. C. (2011). Rapid and highly efficient generation of induced pluripotent stem cells from human umbilical vein endothelial cells. PLoS One, 6(5), e19743. doi:10.1371/journal.pone.0019743.

    CAS  Google Scholar 

  134. Zhang, Z., Gao, Y., Gordon, A., Wang, Z. Z., Qian, Z., & Wu, W. S. (2011). Efficient generation of fully reprogrammed human iPS cells via polycistronic retroviral vector and a new cocktail of chemical compounds. PLoS One, 6(10), e26592. doi:10.1371/journal.pone.0026592.

    CAS  Google Scholar 

  135. Briggs, R., & King, T. J. (1952). Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proceedings of the National Academy of Sciences of the United States of America, 38, 455–463.

    CAS  Google Scholar 

  136. Gurdon, J. B. (1962). Adult frogs derived from the nuclei of single somatic cells. Developmental Biology, 4, 256–273.

    CAS  Google Scholar 

  137. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813.

    CAS  Google Scholar 

  138. Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R., & Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 394, 369–374.

    CAS  Google Scholar 

  139. Hochedlinger, K., & Jaenisch, R. (2002). Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature, 415, 1035–1038.

    CAS  Google Scholar 

  140. Piccolo, F. M., Pereira, C. F., Cantone, I., Brown, K., Tsubouchi, T., Soza-Ried, J., et al. (2011). Using heterokaryons to understand pluripotency and reprogramming. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 366(1575), 2260–2265.

    CAS  Google Scholar 

  141. Tada, M., Tada, T., Lefebvre, L., Barton, S. C., & Surani, M. A. (1997). Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. The EMBO Journal, 16, 6510–6520.

    CAS  Google Scholar 

  142. Tada, M., Takahama, Y., Abe, K., Nakatsuji, N., & Tada, T. (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Current Biology: CB, 11, 1553–1558.

    CAS  Google Scholar 

  143. Silva, J., Chambers, I., Pollard, S., & Smith, A. (2006). Nanog promotes transfer of pluripotency after cell fusion. Nature, 441, 997–1001.

    CAS  Google Scholar 

  144. Bru, T., Clarke, C., McGrew, M. J., Sang, H. M., Wilmut, I., & Blow, J. J. (2008). Rapid induction of pluripotency genes after exposure of human somatic cells to mouse ES cell extracts. Experimental Cell Research, 314(14), 2634–2642.

    CAS  Google Scholar 

  145. Freberg, C. T., Dahl, J. A., Timoskainen, S., & Collas, P. (2007). Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract. Molecular Biology of the Cell, 18(5), 1543–1553.

    CAS  Google Scholar 

  146. Liu, H., Ye, Z., Kim, Y., Sharkis, S., & Jang, Y. Y. (2010). Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology, 51, 1810–1819.

    CAS  Google Scholar 

  147. Aoki, T., Ohnishi, H., Oda, Y., Tadokoro, M., Sasao, M., Kato, H., et al. (2010). Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC. Tissue Engineering Part A, 16, 2197–2206.

    CAS  Google Scholar 

  148. Dick, E., Matsa, E., Young, L. E., Darling, D., & Denning, C. (2011). Faster generation of hiPSCs by coupling high-titer lentivirus and column-based positive selection. Nature Protocols, 6(6), 701–714.

    CAS  Google Scholar 

  149. Zhou, W., & Freed, C. R. (2009). Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells, 27(11), 2667–2674.

    CAS  Google Scholar 

  150. Gonzalez, F., Monasterio, M. B., Tiscornia, G., Pulido, N. M., Vassena, R., Morera, L. B., et al. (2009). Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proceedings of the National Academy of Sciences of the United States of America, 22(106), 8918–8922.

    Google Scholar 

  151. Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., & Woltjen, K. (2009). Virus free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239), 771–775.

    CAS  Google Scholar 

  152. Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4(5), 381–384.

    CAS  Google Scholar 

  153. Lin, S. L., Chang, D. C., Lin, C. H., Ying, S. Y., Leu, D., & Wu, D. T. (2011). Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Research, 39(3), 1054–1065.

    CAS  Google Scholar 

  154. Sugii, S., Kida, Y., Kawamura, T., Suzuki, J., Vassena, R., Yin, Y. Q., et al. (2010). Human and mouse adipose-derived cells support feeder independent induction of pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107, 3558–3563.

    CAS  Google Scholar 

  155. Jang, J., Yoo, J. E., Lee, J. A., Lee, D. R., Kim, J. Y., Huh, Y. J., et al. (2012). Disease-specific induced pluripotent stem cells: A platform for human disease modeling and drug discovery. Experimental & Molecular Medicine, 44(3), 202–213.

    CAS  Google Scholar 

  156. Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A. E., et al. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 26(7), 795–797.

    CAS  Google Scholar 

  157. Wernig, M., Lengner, C. J., Hanna, J., Lodato, M. A., Steine, E., Foreman, R., et al. (2008). A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nature Biotechnology, 26(8), 916–924.

    CAS  Google Scholar 

  158. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322(5903), 949–953.

    CAS  Google Scholar 

  159. Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I. I., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324(5928), 797–801.

    CAS  Google Scholar 

  160. Chou, B. K., Mali, P., Huang, X., Ye, Z., Dowey, S. N., Resar, L. M., et al. (2011). Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Research, 21(3), 518–529.

    CAS  Google Scholar 

  161. Chang, C. W., Lai, Y. S., Pawlik, K. M., Liu, K., Sun, C. W., Li, C., et al. (2009). Polycistronic lentiviral vector for ‘hit and run’ reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells, 27, 1042–1049.

    CAS  Google Scholar 

  162. Aoi, T., Yaem, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., et al. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 321(5889), 699–702.

    CAS  Google Scholar 

  163. Wang, W., Lin, C., Lu, D., Ning, Z., Cox, T., Melvin, D., et al. (2008). Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105(27), 9290–9295.

    CAS  Google Scholar 

  164. Okita, K., & Yamanaka, S. (2010). Induction of pluripotency by defined factors. Experimental Cell Research, 316(16), 2565–2570.

    CAS  Google Scholar 

  165. Cary, L. C., Goebel, M., Corsaro, B. G., Wang, H. G., Rosen, E., & Fraser, M. J. (1989). Transposon mutagenesis of baculoviruses: Analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology, 172(1), 156–169.

    CAS  Google Scholar 

  166. Fraser, M. J., Ciszczon, T., Elick, T., & Bauser, C. (1996). Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Molecular Biology, 5(2), 141–151.

    CAS  Google Scholar 

  167. Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., Hämäläinen, R., et al. (2009). PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458(7239), 766–770.

    CAS  Google Scholar 

  168. Mermer, B., Colb, M., & Krontiris, T. G. (1987). A family of short, interspersed repeats is associated with tandemly repetitive DNA in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 84(10), 3320–3324.

    CAS  Google Scholar 

  169. Li, Z., Yang, C. S., Nakashima, K., & Rana, T. M. (2011). Small RNA-mediated regulation of iPS cell generation. The EMBO Journal, 30(5), 823–834.

    Google Scholar 

  170. Anokye-Danso, F., Trivedi, C. M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., et al. (2011). Highly efficient miRNA -mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8(4), 376–388.

    CAS  Google Scholar 

  171. Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cell with synthetic modified mRNA. Cell Stem Cell, 7, 618–630.

    CAS  Google Scholar 

  172. Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4(6), 472–476.

    CAS  Google Scholar 

  173. Shi, Y., Desponts, C., Do, J. T., Hahm, H. S., Schöler, H. R., & Ding, S. (2008). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell, 3(5), 568–574.

    CAS  Google Scholar 

  174. Mikkelsen, T. S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., et al. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature, 454(7200), 49–55.

    CAS  Google Scholar 

  175. Plath, K., & Lowry, W. E. (2011). Progress in understanding reprogramming to the induced pluripotent state. Nature Reviews Genetics, 12(4), 253–265.

    CAS  Google Scholar 

  176. Djuric, U., & Ellis, J. (2010). Epigenetics of induced pluripotency, the seven-headed dragon. Stem Cell Research & Therapy, 1(1), 3. doi:10.1186/scrt3.

    Google Scholar 

  177. Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38(4), 431–440.

    CAS  Google Scholar 

  178. Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R., Takahashi, K., et al. (2007). Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biology, 9(6), 625–635.

    CAS  Google Scholar 

  179. Jackson-Grusby, L., Beard, C., Possemato, R., Tudor, M., Fambrough, D., Csankovszki, G., et al. (2001). Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genetics, 27(1), 31–39.

    CAS  Google Scholar 

  180. Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., Tan, K. Y., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28(8), 848–855.

    CAS  Google Scholar 

  181. Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467(7313), 285–290.

    CAS  Google Scholar 

  182. Wilson, K. D., Venkatasubrahmanyam, S., Jia, F., Sun, N., Butte, A. J., & Wu, J. C. (2009). MicroRNA profiling of human-induced pluripotent stem cells. Stem Cells and Development, 18(5), 749–758.

    CAS  Google Scholar 

  183. Zhang, Y., Wang, D., Chen, M., Yang, B., Zhang, F., & Cao, K. (2011). Intramyocardial transplantation of undifferentiated rat induced pluripotent stem cells causes tumorigenesis in the heart. PLoS One, 6(4), e19012.

    CAS  Google Scholar 

  184. Sullivan, G. J., Bai, Y., Fletcher, J., & Wilmut, I. (2010). Induced pluripotent stem cells: Epigenetic memories and practical implications. Molecular Human Reproduction, 16(12), 880–885.

    CAS  Google Scholar 

  185. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., et al. (2000). Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Molecular Medicine, 6(2), 88–95.

    CAS  Google Scholar 

  186. Ho, P. J., Yen, M. L., Yet, S. F., & Yen, B. L. (2012). Current applications of human pluripotent stem cells: Possibilities and challenges. Cell Transplantation, 21(5), 801–814.

    Google Scholar 

  187. Miki, T. (2011). Amnion-derived stem cells: In quest of clinical applications. Stem Cell Research & Therapy, 2(3), 25. doi:10.1186/scrt66.

    Google Scholar 

  188. Prusa, A., Marton, E., Rosner, M., Bernaschek, G., & Hengstschläger, M. (2003). Oct-4-expressing cells in human amniotic fuid: a new source for stem cell research? Human Reproduction, 18, 1489–1493.

    Google Scholar 

  189. Christodoulou, I., Kolisis, F. N., Papaevangeliou, D., & Zoumpourlis, V. (2013). Comparative evaluation of human mesenchymal stem cells of fetal (Wharton’s Jelly) and adult (adipose tissue) origin during prolonged in vitro expansion: considerations for cytotherapy. Stem Cells International. doi:10.1155/2013/246134.

  190. Parolini, O., & Soncini, M. (2006). Human placenta: A source of progenitor/stem cells? Journal of Reproductive Medicine and Endocrinology, 3, 117–126.

    CAS  Google Scholar 

  191. Murphy, S., Rosli, S., Acharya, R., Mathias, L., Lim, R., Wallace, E., et al. (2010). Amnion epithelial cell isolation and characterization for clinical use. Current Protocols in Stem Cell Biology, Chapter 1, Unit 1E.6. doi:10.1002/9780470151808.sc01e06s13.

  192. Portmann-Lanz, C. B., Schoeberlein, A., Huber, A., Sager, R., Malek, A., Holzgreve, W., et al. (2006). Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. American Journal of Obstetrics and Gynecology, 194, 664–673.

    CAS  Google Scholar 

  193. Ilancheran, S., Michalska, A., Peh, G., Wallace, E. M., Pera, M., & Manuelpillai, U. (2007). Stem cells derived from human fetal membranes display multilineage differentiation potential. Biology of Reproduction, 77, 577–588.

    CAS  Google Scholar 

  194. Li, H., Niederkorn, J. Y., Neelam, S., Mayhew, E., Word, R. A., McCulley, J. P., et al. (2005). Immunosuppressive factors secreted by human amniotic epithelial cells. Investigative Ophthalmology & Visual Science, 46, 900–907.

    Google Scholar 

  195. Niknejad, H., Peirovi, H., Jorjani, M., Ahmadiani, A., Ghanavi, J., & Seifalian, A. M. (2008). Properties of the amniotic membrane for potential use in tissue engineering. European Cells & Materials, 15, 88–99.

    CAS  Google Scholar 

  196. Sato, K., Ozaki, K., Mori, M., Muroi, M., & Ozawa, K. (2010). Mesenchymal stromal cells for graft versus host disease: Basic aspects and clinical outcomes. Journal of Clinical and Experimental Hematopathology, 50(2), 79–89.

    Google Scholar 

  197. Lubis, A. M. T., & Lubis, V. K. (2012). Adult bone marrow stem cells in cartilage therapy. Acta Medica Indonesiana (The Indonesian Journal of Internal Medicine), 44(1), 62–68.

    Google Scholar 

  198. Mohty, M., & Apperley, J. F. (2010). Long-term physiological side effects after allogenic bone marrow transplantation. Hematology, 2010(1), 229–236.

    Google Scholar 

  199. Ramos-Mejía, V., Montes, R., Bueno, C., Ayllón, V., Real, P. J., Rodríguez, R., et al. (2012). Residual expression of the reprogramming factors prevents differentiation of iPSC generated from human fibroblasts and cord blood CD34+ progenitors. PLoS One, 7(4), e35824. doi:10.1371/journal.pone.0035824.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Czekaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skowron, K., Tomsia, M. & Czekaj, P. An Experimental Approach to the Generation of Human Embryonic Stem Cells Equivalents. Mol Biotechnol 56, 12–37 (2014). https://doi.org/10.1007/s12033-013-9702-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9702-4

Keywords

Navigation