Molecular Biotechnology

, Volume 56, Issue 1, pp 12–37 | Cite as

An Experimental Approach to the Generation of Human Embryonic Stem Cells Equivalents

  • Katarzyna Skowron
  • Marcin Tomsia
  • Piotr CzekajEmail author


Recently, particular attention has been paid to the human embryonic stem cells (hESC) in the context of their potential application in regenerative medicine; however, ethical concerns prevent their clinical application. Induction of pluripotency in somatic cells seems to be a good alternative for hESC recruitment regarding its potential use in tissue regeneration, disease modeling, and drug screening. Since Yamanaka’s team in 2006 restored pluripotent state of somatic cells for the first time, a significant progress has been made in the area of induced pluripotent stem cells (iPSC) generation. Here, we review the current state of knowledge in the issue of techniques applied to establish iPSC. Somatic cell nuclear transfer, cell fusion, cell extracts reprogramming, and techniques of direct reprogramming are described. Retroviral and lentiviral transduction are depicted as ways of cell reprogramming with the use of integrating vectors. Contrary to them, adenoviruses, plasmids, single multiprotein expression vectors, and PiggyBac transposition systems are examples of non-integrative vectors used in iPSC generation protocols. Furthermore, reprogramming with the delivery of specific proteins, miRNA or small chemical compounds are presented. Finally, the changes occurring during the reprogramming process are described. It is concluded that subject to some limitations iPSC could become equivalents for hESC in regenerative medicine.


Adult stem cells Human embryonic stem cells Induced pluripotent stem cells Pluripotency Somatic cell reprogramming 



Adult stem cells


Cancer stem cells




Embryonic stem cells


Human embryonic carcinoma


Human embryonic stem cells


Human-induced pluripotent stem cells


Human protein-induced pluripotent stem cells


Inner cell mass


Induced pluripotent stem cells


Mouse embryonic stem cells


Mouse embryonic fibroblasts


Oct4, Sox2, Klf4




Oct4, Sox2, Klf4, c-Myc




Primordial germ cells


Pluripotent stem cells


Stem cells


Somatic cell nuclear transfer


Valproic acid


Very small embryonic-like stem cells


  1. 1.
    Patel, M., & Yang, S. (2010). Advances in reprogramming somatic cells to induced pluripotent stem cells. Stem Cell Reviews, 6(3), 367–380.Google Scholar
  2. 2.
    Shao, L., & Wu, W. S. (2010). Gene-delivery systems for iPS cell generation. Expert Opinion on Biological Therapy, 10(2), 231–242.Google Scholar
  3. 3.
    Lo, B., & Parham, L. (2009). Ethical issues in stem cell research. Endocrine Reviews, 30(3), 204–213.Google Scholar
  4. 4.
    Young, H. E., & Black, A. C., Jr. (2004). Adult stem cells. The Anatomical Record. Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 276(1), 75–102.Google Scholar
  5. 5.
    Ferro, F., Spelat, R., D’Aurizio, F., Puppato, E., Pandolfi, M., et al. (2012). Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics. PLoS One, 7(7), e41774. doi: 10.1371/journal.pone.0041774.Google Scholar
  6. 6.
    Arumugam, S. B., Trentz, O. A., Arikketh, D., Senthinathan, V., Rosario, B., & Mohandas, P. V. (2011). Detection of embryonic stem cell markers in adult human adipose tissue-derived stem cells. Indian Journal of Pathology and Microbiology, 54(3), 501–508.Google Scholar
  7. 7.
    Pauklin, M., Thomasen, H., Pester, A., Steuhl, K. P., & Meller, D. (2011). Expression of pluripotency and multipotency factors in human ocular surface tissues. Current Eye Research, 36(12), 1086–1097.Google Scholar
  8. 8.
    Knoepflera, P. S. (2009). Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative medicine. Stem Cells, 27(5), 1050–1056.Google Scholar
  9. 9.
    Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. Science, 322, 945–949.Google Scholar
  10. 10.
    Yang, R., Jiang, M., Kumar, S. M., Xu, T., Wang, F., Xiang, L., et al. (2011). Generation of melanocytes from induced pluripotent stem cells. The Journal of Investigative Dermatology, 131(12), 2458–2466.Google Scholar
  11. 11.
    Wobus, M. A., & Boheler, K. R. (2005). Embryonic stem cells: Prospects for developmental biology and cell therapy. Physiological Reviews, 85, 635–678.Google Scholar
  12. 12.
    Yamanaka, S., & Blau, H. M. (2010). Nuclear reprogramming to a pluripotent state by three approaches. Nature, 465(7299), 704–712.Google Scholar
  13. 13.
    Tannenbaum, S. E., Turetsky, T. T., Singer, O., Aizenman, E., Kirshberg, S., Ilouz, N., et al. (2012). Derivation of xeno-free and GMP-grade human embryonic stem cells—Platforms for future clinical applications. PLoS One, 7(6), e35325. doi: 10.1371/journal.pone.0035325.Google Scholar
  14. 14.
    Henderson, J. K., Draper, J. S., Baillie, H. S., Fishel, S., Thomson, J. A., Moore, H., et al. (2002). Preimplantation human embros and embryonic stem cell show comparable expression of stage-specific embryonic antigens. Stem Cells, 20, 329–337.Google Scholar
  15. 15.
    Muramatsu, T., & Muramatsu, H. (2004). Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconjugate Journal, 21(1–2), 41–45.Google Scholar
  16. 16.
    Kudo, T., Kaneko, M., Iwasaki, H., Togayachi, A., Nishihara, S., Abe, K., et al. (2004). Normal embryonic and germ cell development in mice lacking alpha 1,3-fucosyltransferase IX (Fut9) which show disappearance of stage-specific embryonic antigen 1. Molecular and Cellular Biology, 24(10), 4221–4228.Google Scholar
  17. 17.
    Wright, A. J., & Andrews, P. W. (2009). Surface marker antigens in the characterization of human embryonic stem cells. Stem Cell Research, 3, 3–11.Google Scholar
  18. 18.
    Zhao, W., Ji, X., Zhang, F., Li, L., & Ma, L. (2012). Embryonic stem cell markers. Molecules, 17(6), 6196–6236.Google Scholar
  19. 19.
    King, F. W., Ritner, C., Liszewski, W., Kwan, H. C., Pedersen, A., Leavitt, A. D., et al. (2009). Subpopulations of human embryonic stem cells with distinct tissue-specific fates can be selected from pluripotent cultures. Stem Cells and Development, 18(10), 1441–1450.Google Scholar
  20. 20.
    Ji, J., Werbowetski-Ogilvie, T. E., Zhong, B., Hong, S. H., & Bhatia, M. (2009). Pluripotent transcription factors possess distinct roles in normal versus transformed human stem cells. PLoS One, 4(11), e8065. doi: 10.1371/journal.pone.0008065.Google Scholar
  21. 21.
    Liu, X., Huang, J., Chen, T., Wang, Y., Xin, S., Li, J., et al. (2008). Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells. Cell Research, 18(12), 1177–1189.Google Scholar
  22. 22.
    Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947–956.Google Scholar
  23. 23.
    Laursen, S. B., Mollgard, K., Olesen, C., Oliveri, R. S., Brøchner, C. B., Byskov, A. G., et al. (2007). Regional differences in expression of specific markers for human embryonic stem cells. Reproductive Biomedicine Online, 15(1), 89–98.Google Scholar
  24. 24.
    Wang, X., & Dai, J. (2010). Concise review: Isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells, 28(5), 885–893.Google Scholar
  25. 25.
    Boiani, M., & Sholer, H. R. (2005). Regulatory networks in embro-derived pluripotent stem cells. Nature Reviews Molecular Cell Biology, 6(11), 872–884.Google Scholar
  26. 26.
    Babaie, Y., Herwig, R., Greber, B., Brink, T. C., Wruck, W., Groth, D., et al. (2007). Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells, 25, 500–510.Google Scholar
  27. 27.
    Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., et al. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct-4. Cell, 95, 379–391.Google Scholar
  28. 28.
    Taranger, C. K., Noer, A., Sorensen, A. L., Hakelien, A. M., Boquest, A. C., & Collas, P. (2005). Induction of dedifferentiation, genome wide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Molecular Biology of the Cell, 16(12), 5719–5735.Google Scholar
  29. 29.
    Kim, R. J., & Nam, J. S. (2011). OCT4 expression enhances features of cancer stem cells in a mouse model of breast cancer. Laboratory Animal Research, 27(2), 147–152.Google Scholar
  30. 30.
    Adachi, K., Suemori, H., Yasuda, S. Y., Nakatsuji, N., & Kawase, E. (2010). Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 15, 455–469.Google Scholar
  31. 31.
    Fong, H., Hohenstein, K. A., & Donovan, P. J. (2008). Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells, 26, 1931–1938.Google Scholar
  32. 32.
    Guan, H., Xie, L., Leithäuser, F., Flossbach, L., Möller, P., Wirth, T., et al. (2010). KLF4 is a tumor suppressor in B-cell non-Hodgkin lymphoma and in classic Hodgkin lymphoma. Blood, 116(9), 1469–1478.Google Scholar
  33. 33.
    McConnell, B. B., & Yang, V. W. (2010). Mammalian Krüppel-like factors in health and diseases. Physiological Reviews, 90(4), 1337–1381.Google Scholar
  34. 34.
    McConnell, B. B., Kim, S. S., Yu, K., Ghaleb, A. M., Takeda, N., Manabe, I., et al. (2011). Krüppel-like factor 5 is important for maintenance of crypt architecture and barrier function in mouse intestine. Gastroenterology, 141(4), 1302–1313.Google Scholar
  35. 35.
    Nandan, M. O., & Yang, W. V. (2009). The role of Krüppel-like factors in the reprogramming of somatic cells to induced pluripotent stem cells. Histology and Histopathology, 24(10), 1343–1355.Google Scholar
  36. 36.
    Jiang, J., Chan, Y. S., Loh, Y. H., Cai, J., Tong, G. Q., Lim, C. A., et al. (2008). A core Klf circuitry regulates self-renewal of embryonic stem cells. Nature Cell Biology, 10(3), 353–360.Google Scholar
  37. 37.
    Chan, K. K., Zhang, J., Chia, N. Y., Chan, Y. S., Sim, H. S., Tan, K. S., et al. (2009). KLF4 and PBX1 directly regulate NANOG expression in human embryonic stem cells. Stem Cells, 27(9), 2114–2125.Google Scholar
  38. 38.
    Jain, A. K., Allton, K., Iacovino, M., Mahen, E., Milczarek, R. J., Zwaka, T. P., et al. (2012). p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biology, 10(2), e1001268. doi: 10.1371/journal.pbio.1001268.Google Scholar
  39. 39.
    Zhang, W., Geiman, D. E., Shields, J. M., Dang, D. T., Mahatan, C. S., Kaestner, K. H., et al. (2000). The gutenriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. Journal of Chemical Biology, 275, 18391–18398.Google Scholar
  40. 40.
    Zhou, Q., Hong, Y., Zhan, Q., Shen, Y., & Liu, Z. (2009). Role for Kruppel-like factor 4 in determining the outcome of p53 response to DNA damage. Cancer Research, 69(21), 8284–8292.Google Scholar
  41. 41.
    Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., et al. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature, 460(7259), 1132–1135.Google Scholar
  42. 42.
    Martinato, F., Cesaroni, M., Amati, B., & Guccione, E. (2008). Analysis of Myc-induced histone modifications on target chromatin. PLoS One, 3(11), e3650. doi: 10.1371/journal.pone.0003650.Google Scholar
  43. 43.
    Okita, K., & Yamanaka, S. (2011). Induced pluripotent stem cells: Opportunities and challenges. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 366(1575), 2198–2207.Google Scholar
  44. 44.
    Cartwright, P., McLean, C., Sheppard, A., Rivett, D., Jones, K., & Dalton, S. (2005). LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 132(5), 885–896.Google Scholar
  45. 45.
    Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.Google Scholar
  46. 46.
    Li, H. Y., Chien, Y., Chen, Y. J., Chen, S. F., Chang, Y. L., Chiang, C. H., et al. (2011). Reprogramming induced pluripotent stem cells in the absence of c-Myc for differentiation into hepatocyte-like cells. Biomaterials, 32(26), 5994–6005.Google Scholar
  47. 47.
    Nakagawa, M., Takizawa, N., Narita, M., Ichisaka, T., & Yamanaka, S. (2010). Promotion of direct reprograming by transformation-deficient Myc. PNAS, 107(32), 14152–14157.Google Scholar
  48. 48.
    Ralston, A., & Rossant, J. (2010). The genetic of induced pluripotency. Reproduction, 139, 35–44.Google Scholar
  49. 49.
    Pan, G., & Thomson, J. A. (2007). Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Research, 17, 42–49.Google Scholar
  50. 50.
    Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., et al. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113(5), 631–642.Google Scholar
  51. 51.
    Ratajczak, M. Z., Zuba-Surma, E. K., Shin, D.-K., Ratajczak, J., & Kucia, M. (2008). Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Experimental Gerontology, 43(11), 1009–1017.Google Scholar
  52. 52.
    Ratajczak, M. Z., Zuba-Surma, E. K., Machalinski, B., Ratajczak, J., & Kucia, M. (2008). Very small embryonic-like (VSEL) stem cells: purification from adult organs, characterization, and biological significance. Stem Cell Reviews, 4(2), 89–99.Google Scholar
  53. 53.
    Keating, A. (2012). Mesenchymal stromal cells: New directions. Cell Stem Cell, 10(6), 709–716.Google Scholar
  54. 54.
    Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., et al. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7(5), 393–395.Google Scholar
  55. 55.
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.Google Scholar
  56. 56.
    Chinen, J., & Buckley, R. H. (2010). Transplantation immunology: Solid organ and bone marrow. Journal of Allergy and Clinical Immunology, 125(2 Suppl 2), S324–S335.Google Scholar
  57. 57.
    Kimbrel, E. A., & Lu, S. J. (2011). Potential clinical applications for human pluripotent stem cell-derived blood components. Stem Cells International, 2011, 273076. doi: 10.4061/2011/273076.Google Scholar
  58. 58.
    Trounson, A., Thakar, R. G., Lomax, G., & Gibbons, D. (2011). Clinical trials for stem cell therapies. BMC Medicine, 10(9), 52. doi: 10.1186/1741-7015-9-52.Google Scholar
  59. 59.
    Mihaila, S. M., Frias, A. M., Pirraco, R. P., Rada, T., Reis, R. L., Gomes, M. E., et al. (2013). Human adipose tissue-derived SSEA-4 subpopulation multi-differentiation potential towards the endothelial and osteogenic lineages. Tissue Engineering Part A, 19(1–2), 235–246. doi: 10.1089/ten.TEA.2012.0092.Google Scholar
  60. 60.
    Riekstina, U., Cakstina, I., Parfejevs, V., Hoogduijn, M., Jankovskis, G., Muiznieks, I., et al. (2009). Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Review, 5(4), 378–386.Google Scholar
  61. 61.
    Okura, H., Komoda, H., Saga, A., Kakuta-Yamamoto, A., Hamada, Y., Fumimoto, Y., et al. (2010). Properties of hepatocyte-like cell clusters from human adipose tissue-derived mesenchymal stem cells. Tissue Engineering Part C Methods, 16(4), 761–770.Google Scholar
  62. 62.
    Ming, G., & Song, H. (2011). Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 70(4), 687–702.Google Scholar
  63. 63.
    Dawn, B., Tiwari, S., Kucia, M. J., Zuba-Surma, E. K., Guo, Y., Sanganalmath, S. K., et al. (2008). Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells, 26(6), 1646–1655.Google Scholar
  64. 64.
    Alison, M. R., & Islam, S. (2009). Attributes of adult stem cells. The Journal of Pathology, 2009(217), 144–160.Google Scholar
  65. 65.
    Zuba-Surma, E. K., Wojakowski, W., Ratajczak, M. Z., & Dawn, B. (2011). Very small embryonic-like stem cells: Biology and therapeutic potential for heart repair. Antioxidants & Redox Signaling, 15(7), 1821–1834.Google Scholar
  66. 66.
    Jorgensen, C., & Noël, D. (2011). Mesenchymal stem cells in osteoarticular diseases. Regenerative Medicine, 6(6 Suppl), 44–51.Google Scholar
  67. 67.
    Highfill, S. L., Kelly, R. M., O’Shaughnessy, M. J., Zhou, Q., Xia, L., Panoskaltsis-Mortari, A., et al. (2009). Multipotent adult progenitor cells can suppress graft-versus-host disease via prostaglandin E2 synthesis and only if localized to sites of allopriming. Blood, 114(3), 693–701.Google Scholar
  68. 68.
    Laurenti, L., Tarnani, M., Chiusolo, P., Sorà, F., & Sica, S. (2010). Allogeneic transplantation for chronic lymphocytic leukemia. Mediterranean journal of hematology and infectious diseases, 2(2), e2010026. doi: 10.4084/MJHID.2010.026.Google Scholar
  69. 69.
    Broxmeyer, H. E. (2010). Umbilical cord transplantation: Epilogue. Seminars in Hematology, 47(1), 97–103.Google Scholar
  70. 70.
    Abdulrazzak, H., Moschidou, D., Jones, G., & Guillot, P. V. (2010). Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues. Journal of the Royal Society, Interface, 7(Suppl 6), S689–S706.Google Scholar
  71. 71.
    Mihu, C. M., Mihu, D., Costin, N., Rus Ciucă, D., Suşman, S., & Ciortea, R. (2008). Isolation and characterization of stem cells from the placenta and the umbilical cord. Romanian Journal of Morphology and Embryology, 49(4), 441–446.Google Scholar
  72. 72.
    Broxmeyer, H. E. (2010). Cord blood hematopoietic stem cell transplantation. StemBook, The Stem Cell Research Community. doi: 10.3824/stembook.1.52.1, StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute; 2008. Available from:
  73. 73.
    Musina, R. A., Bekchanova, E. S., Belyavskii, A. V., Grinenko, T. S., & Sukhikh, G. T. (2007). Umbilical cord blood mesenchymal stem cells. Bulletin of Experimental Biology and Medicine, 143(1), 127–131.Google Scholar
  74. 74.
    Parolini, O., Alviano, F., Bagnara, G. P., Bilic, G., Bühring, H. J., Evangelista, M., et al. (2008). Concise review: Isolation and characterization of cells from human term placenta: Outcome of the first international workshop on placenta derived stem cells. Stem Cells, 26(2), 300–311.Google Scholar
  75. 75.
    Díaz-Prado, S., Muiños-López, E., Hermida-Gómez, T., Oreiro, N., Fernández-López, C., & Blanco, F. J. (2011). Human amniotic membrane as an alternative source of stem cells for regenerative medicine. Differentiation, 81, 162–171.Google Scholar
  76. 76.
    Lee, L., Ueno, M., Van Handel, B., & Mikkola, H. K. (2010). Placenta as a newly identified source of hematopoietic stem cells. Current Opinion in Hematology, 17(4), 313–318.Google Scholar
  77. 77.
    Davydova, A. (2010). Stem cells in human amniotic fluid. Biological Bulletin, 37(5), 437–445.Google Scholar
  78. 78.
    D’Alimonte, I., Lannutti, A., Pipino, C., Di Tomo, P., Pierdomenico, L., Cianci, E., et al. (2013). Wnt signaling behaves as a “Master Regulator” in the osteogenic and adipogenic commitment of human amniotic fluid mesenchymal stem cells. Stem Cell Reviews, 9(5), 642–654. doi: 10.1007/s12015-013-9436-5.
  79. 79.
    Rosner, M., Schipany, K., Shanmugasundaram, B., Lubec, G., & Hengstschläger, M. (2012). Amniotic fluid stem cells: Future perspectives. Stem Cells International, 2012, 741810. doi: 10.1155/2012/741810.Google Scholar
  80. 80.
    Pratama, G., Vaghjiani, V., Tee, J. Y., Liu, Y. H., Chan, J., Tan, C., et al. (2011). Changes in culture expanded human amniotic epithelial cells: Implications for potential therapeutic applications. PLoS One, 6(11), e26136. doi: 10.1371/journal.pone.0026136.Google Scholar
  81. 81.
    Fong, C. Y., Chak, L. L., Biswas, A., Tan, J. H., Gauthaman, K., Chan, W. K., et al. (2011). Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Reviews, 7(1), 1–16. doi: 10.1007/s12015-010-9166-x.Google Scholar
  82. 82.
    Taghizadeh, R. R., Cetrulo, K. J., & Cetrulo, C. L. (2011). Wharton’s Jelly stem cells: Future clinical applications. Placenta, 32(4), 311–315.Google Scholar
  83. 83.
    Peng, J., Wang, Y., Zhang, L., Zhao, B., Zhao, Z., Chen, J., et al. (2011). Human umbilical cord Wharton’s jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro. Brain Research Bulletin, 84(3), 235–243.Google Scholar
  84. 84.
    Hare, J. M., Fishman, J. E., Gerstenblith, G., DiFede Velazquez, D. L., Zambrano, J. P., et al. (2012). Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON randomized trial. The Journal of the American Medical Association, 308(22), 2369–2379.Google Scholar
  85. 85.
    Mazzini, L., Mareschi, K., Ferrero, I., Miglioretti, M., Stecco, A., Servo, S., et al. (2012). Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: A long-term safety study. Cytotherapy, 14(1), 56–60.Google Scholar
  86. 86.
    Zhou, H., Guo, M., Bian, C., Sun, Z., Yang, Z., Zeng, Y., et al. (2010). Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: Clinical report. Biology of Blood and Marrow Transplantation, 16(3), 403–412.Google Scholar
  87. 87.
    Nejadnik, H., Hui, J. H., Feng Choong, E. P., Tai, B. C., & Lee, E. H. (2010). Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: An observational cohort study. The American Journal of Sports Medicine, 38(6), 1110–1116.Google Scholar
  88. 88.
    Venkataramana, N. K., Pal, R., Rao, S. A., Naik, A. L., Jan, M., Nair, R., et al. (2012). Bilateral transplantation of allogenic adult human bone marrow-derived mesenchymal stem cells into the subventricular zone of Parkinson’s disease: A pilot clinical study. Stem Cells International, 2012, 931902. doi: 10.1155/2012/931902.Google Scholar
  89. 89.
    Fischer-Rasokat, U., Assmus, B., Seeger, F. H., Honold, J., Leistner, D., Fichtlscherer, S., et al. (2009). A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy: Final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy. Circulation: Heart Failure, 2(5), 417–423.Google Scholar
  90. 90.
    Houtgraaf, J. H., den Dekker, W. K., van Dalen, B. M., Springeling, T., de Jong, R., van Geuns, R. J., et al. (2012). First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. Journal of the American College of Cardiology, 59(5), 539–540.Google Scholar
  91. 91.
    Zhang, Z., Lin, H., Shi, M., Xu, R., Fu, J., Lv, J., et al. (2012). Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. Journal of Gastroenterology and Hepatology, 27(Suppl. 2), 112–120.Google Scholar
  92. 92.
    Hu, J., Yu, X., Wang, Z., Wang, F., Wang, L., Gao, H., et al. (2013). Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocrine Journal, 60(3), 347–357.Google Scholar
  93. 93.
    Rizzino, A. (2007). A challenge for regenerative medicine: Proper genetic programming, not cellular mimicry. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 236(12), 3199–3207.Google Scholar
  94. 94.
    Christen, B., Robles, V., Raya, M., Paramonov, I., & Belmonte, J. C. I. (2010). Regeneration and reprogramming compared. BMC Biology, 8, 5. doi: 10.1186/1741-7007-8-5.Google Scholar
  95. 95.
    Sugomito, K., Gordon, S. P., & Meyerowitz, E. M. (2011). Regeneration in plants and animals: Dedifferentiation, or just differentiation? Trends in Cell Biology, 21(4), 212–218.Google Scholar
  96. 96.
    Red-Horse, K., Ueno, H., Weissman, I. L., & Krasnow, M. A. (2010). Coronary arteries form by developmental reprogramming of venous cells. Nature, 464(7288), 549–553.Google Scholar
  97. 97.
    Nakagawa, T., Sharma, M., Nobeshima, Y., Braun, R. E., & Yoshida, S. (2010). Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science, 328(5974), 62–67.Google Scholar
  98. 98.
    Li, W. C., Rukstalls, M., Nishimura, W., Tchipashvili, V., Habener, J. F., Sharma, A., et al. (2010). Activation of pancreatic-duct-derived progenitor cells during pancreas regeneration in adult rats. Journal of Cell Science, 123, 2792–2802.Google Scholar
  99. 99.
    Zheng, Y., Begum, S., Zhang, C., Fleming, K., Masumura, C., Zhang, M., et al. (2011). Increased BrdU incorporation reflecting DNA repair, neuronal de-differentiation or possible neurogenesis in the adult cochlear nucleus following bilateral cochlear lesions in the rat. Experimental Brain Research, 210, 477–487.Google Scholar
  100. 100.
    Ono, H., Oki, Y., Bono, H., & Kano, K. (2011). Gene expression profiling in multipotent DFAT cells derived from mature adipocytes. Biochemical and Biophysical Research Communications, 407(3), 562–567.Google Scholar
  101. 101.
    Shen, J. F., Sugawara, A., Yamashita, J., Ogura, H., & Sato, S. (2011). Dedifferentiated fat cells: An alternative source of adult multipotent cells from the adipose tissues. International Journal of Oral Science, 3(3), 117–124.Google Scholar
  102. 102.
    Krause, D., & Cantley, L. G. (2005). Bone marrow plasticity revisited: Protection or differentiation in the kidney tubule? The Journal of Clinical Investigation, 115, 1705–1708.Google Scholar
  103. 103.
    Chen, Y., Wong, P. P., Sjeklocha, L., Steer, C. J., & Sahin, M. B. (2012). Mature hepatocytes exhibit unexpected plasticity by direct dedifferentiation into liver progenitor cells in culture. Hepatology, 55(2), 563–574.Google Scholar
  104. 104.
    Shoshani, O., & Zipori, D. (2011). Mammalian cell dedifferentation as a possible outcome of stress. Stem Cell Reviews, 7, 488–493.Google Scholar
  105. 105.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.Google Scholar
  106. 106.
    Singh, U., Quintanilla, R. H., Grecian, S., Gee, K. R., Rao, M. S., & Lakshmipathy, U. (2012). Novel live alkaline phosphatase substrate for identification of pluripotent stem cells. Stem Cell Reviews, 8(3), 1021–1029.Google Scholar
  107. 107.
    Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.Google Scholar
  108. 108.
    All, A. H., Bazley, F. A., Gupta, S., Pashai, N., Hu, C., Pourmorteza, A., et al. (2012). Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury. PLoS One, 7(10), e47645. doi: 10.1371/journal.pone.0047645.Google Scholar
  109. 109.
    Shiraki, N., Yamazoe, T., Qin, Z., Ohgomori, K., Mochitate, K., Kume, K., et al. (2011). Efficient differentiation of embryonic stem cells into hepatic cells in vitro using a feeder-free basement membrane substratum. PLoS One, 6(8), e24228. doi: 10.1371/journal.pone.0024228.Google Scholar
  110. 110.
    Wang, D., Morales, J. E., Calame, D. G., Alcorn, J. L., & Wetsel, R. A. (2010). Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Molecular Therapy, 18(3), 625–634.Google Scholar
  111. 111.
    Trounson, A. (2006). The production and directed differentiation of human embryonic stem cells. Endocrine Reviews, 27(2), 208–219.Google Scholar
  112. 112.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.Google Scholar
  113. 113.
    Martins-Taylor, K., & Xu, R. H. (2012). Concise review: Genomic stability of human induced pluripotent stem cells. Stem Cells, 30(1), 22–27.Google Scholar
  114. 114.
    Chin, M. H., Mason, M. J., Xie, W., Volinia, S., Singer, M., Peterson, C., et al. (2009). Induced pluripotent stem cells and embryonic stem cell are distinguished by gene expression signatures. Cell Stem Cell, 5(1), 111–123.Google Scholar
  115. 115.
    Song, B., Smink, A. M., Jones, C. V., Callaghan, J. M., Firth, S. D., Bernard, C. A., et al. (2012). The directed differentiation of human iPS cells into kidney podocytes. PLoS One, 7(9), e46453. doi: 10.1371/journal.pone.0046453.Google Scholar
  116. 116.
    Cai, J., Yang, M., Poremsky, E., Kidd, S., Schneider, J. S., & Iacovitti, L. (2010). Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells and Development, 19(7), 1017–1023. doi: 10.1089/scd.2009.0319.Google Scholar
  117. 117.
    Si-Tayeb, K., Noto, F. K., Nagaoka, M., Li, J., Battle, M. A., Duris, C., et al. (2010). Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology, 51(1), 297–305.Google Scholar
  118. 118.
    Wang, S., Bates, J., Li, X., Schanz, S., Chandler-Militello, D., Levine, C., et al. (2013). Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell, 12(2), 252–264. doi: 10.1016/j.stem.2012.12.002.Google Scholar
  119. 119.
    Li, Y., Tsai, Y. T., Hsu, C. W., Erol, D., Yang, J., Wu, W. H., et al. (2012). Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Molecular Medicine, 18, 1312–1319.Google Scholar
  120. 120.
    Chamberlain, S. J., Chen, P. F., Ng, K. Y., Bourgois-Rocha, F., Lemtiri-Chlieh, F., Levine, E. S., et al. (2010). Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proceedings of the National Academy of Sciences of the United States of America, 107(41), 17668–17673.Google Scholar
  121. 121.
    Ebert, A. D., Yu, J., & Rose, F. F., Jr. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457, 277–280.Google Scholar
  122. 122.
    Chun, Y. S., Chaudhari, P., & Jang, Y. Y. (2010). Applications of patient-specific induced pluripotent stem cells; focused on disease modeling, drug screening and therapeutic potentials for liver disease. International Journal of Biological Sciences, 6(7), 796–805.Google Scholar
  123. 123.
    Stadtfeld, M., & Hochedlinger, K. (2010). Induced pluripotency: History, mechanisms, and applications. Genes & Development, 24, 2239–2263.Google Scholar
  124. 124.
    Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134, 877–886.Google Scholar
  125. 125.
    Marchetto, M. C., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., et al. (2010). A model for neural development and treatment of rett syndrome using human induced pluripotent stem cells. Cell, 143, 527–539.Google Scholar
  126. 126.
    Carvajal-Vergara, X., Sevilla, A., D’Souza, S. L., Ang, Y. S., Schaniel, C., Lee, D. F., et al. (2010). Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature, 465, 808–812.Google Scholar
  127. 127.
    Raya, A., Rodríguez-Pizà, I., Guenechea, G., Vassena, R., Navarro, S., Barrero, M. J., et al. (2009). Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 460(7251), 53–59.Google Scholar
  128. 128.
    Liao, J., Wu, Z., Wang, Y., Cheng, L., Cui, C., Gao, Y., et al. (2008). Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Research, 18(5), 600–603.Google Scholar
  129. 129.
    Hochedlinger, K., & Plath, K. (2009). Epigenetic reprogramming and induced pluripotency. Development, 136(4), 509–523.Google Scholar
  130. 130.
    Aasen, T., Raya, A., Barrero, M. J., Garreta, E., Consiglio, A., Gonzalez, F., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26, 1276–1284.Google Scholar
  131. 131.
    Zhao, H. X., Li, Y., Jin, H. F., Xie, L., Liu, C., Jiang, F., et al. (2010). Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/SOX2/NANOG. Differentiation, 80(2–3), 123–129.Google Scholar
  132. 132.
    Zhou, T., Benda, C., Dunzinger, S., Huang, Y., Ho, J. C., Yang, J., et al. (2012). Generation of human induced pluripotent stem cells from urine samples. Nature Protocols, 7(12), 2080–2089.Google Scholar
  133. 133.
    Panopoulos, A. D., Ruiz, S., Yi, F., Herrerías, A., Batchelder, E. M., & Izpisua Belmonte, J. C. (2011). Rapid and highly efficient generation of induced pluripotent stem cells from human umbilical vein endothelial cells. PLoS One, 6(5), e19743. doi: 10.1371/journal.pone.0019743.Google Scholar
  134. 134.
    Zhang, Z., Gao, Y., Gordon, A., Wang, Z. Z., Qian, Z., & Wu, W. S. (2011). Efficient generation of fully reprogrammed human iPS cells via polycistronic retroviral vector and a new cocktail of chemical compounds. PLoS One, 6(10), e26592. doi: 10.1371/journal.pone.0026592.Google Scholar
  135. 135.
    Briggs, R., & King, T. J. (1952). Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proceedings of the National Academy of Sciences of the United States of America, 38, 455–463.Google Scholar
  136. 136.
    Gurdon, J. B. (1962). Adult frogs derived from the nuclei of single somatic cells. Developmental Biology, 4, 256–273.Google Scholar
  137. 137.
    Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813.Google Scholar
  138. 138.
    Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R., & Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 394, 369–374.Google Scholar
  139. 139.
    Hochedlinger, K., & Jaenisch, R. (2002). Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature, 415, 1035–1038.Google Scholar
  140. 140.
    Piccolo, F. M., Pereira, C. F., Cantone, I., Brown, K., Tsubouchi, T., Soza-Ried, J., et al. (2011). Using heterokaryons to understand pluripotency and reprogramming. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 366(1575), 2260–2265.Google Scholar
  141. 141.
    Tada, M., Tada, T., Lefebvre, L., Barton, S. C., & Surani, M. A. (1997). Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. The EMBO Journal, 16, 6510–6520.Google Scholar
  142. 142.
    Tada, M., Takahama, Y., Abe, K., Nakatsuji, N., & Tada, T. (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Current Biology: CB, 11, 1553–1558.Google Scholar
  143. 143.
    Silva, J., Chambers, I., Pollard, S., & Smith, A. (2006). Nanog promotes transfer of pluripotency after cell fusion. Nature, 441, 997–1001.Google Scholar
  144. 144.
    Bru, T., Clarke, C., McGrew, M. J., Sang, H. M., Wilmut, I., & Blow, J. J. (2008). Rapid induction of pluripotency genes after exposure of human somatic cells to mouse ES cell extracts. Experimental Cell Research, 314(14), 2634–2642.Google Scholar
  145. 145.
    Freberg, C. T., Dahl, J. A., Timoskainen, S., & Collas, P. (2007). Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract. Molecular Biology of the Cell, 18(5), 1543–1553.Google Scholar
  146. 146.
    Liu, H., Ye, Z., Kim, Y., Sharkis, S., & Jang, Y. Y. (2010). Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology, 51, 1810–1819.Google Scholar
  147. 147.
    Aoki, T., Ohnishi, H., Oda, Y., Tadokoro, M., Sasao, M., Kato, H., et al. (2010). Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC. Tissue Engineering Part A, 16, 2197–2206.Google Scholar
  148. 148.
    Dick, E., Matsa, E., Young, L. E., Darling, D., & Denning, C. (2011). Faster generation of hiPSCs by coupling high-titer lentivirus and column-based positive selection. Nature Protocols, 6(6), 701–714.Google Scholar
  149. 149.
    Zhou, W., & Freed, C. R. (2009). Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells, 27(11), 2667–2674.Google Scholar
  150. 150.
    Gonzalez, F., Monasterio, M. B., Tiscornia, G., Pulido, N. M., Vassena, R., Morera, L. B., et al. (2009). Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proceedings of the National Academy of Sciences of the United States of America, 22(106), 8918–8922.Google Scholar
  151. 151.
    Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., & Woltjen, K. (2009). Virus free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239), 771–775.Google Scholar
  152. 152.
    Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4(5), 381–384.Google Scholar
  153. 153.
    Lin, S. L., Chang, D. C., Lin, C. H., Ying, S. Y., Leu, D., & Wu, D. T. (2011). Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Research, 39(3), 1054–1065.Google Scholar
  154. 154.
    Sugii, S., Kida, Y., Kawamura, T., Suzuki, J., Vassena, R., Yin, Y. Q., et al. (2010). Human and mouse adipose-derived cells support feeder independent induction of pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107, 3558–3563.Google Scholar
  155. 155.
    Jang, J., Yoo, J. E., Lee, J. A., Lee, D. R., Kim, J. Y., Huh, Y. J., et al. (2012). Disease-specific induced pluripotent stem cells: A platform for human disease modeling and drug discovery. Experimental & Molecular Medicine, 44(3), 202–213.Google Scholar
  156. 156.
    Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A. E., et al. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 26(7), 795–797.Google Scholar
  157. 157.
    Wernig, M., Lengner, C. J., Hanna, J., Lodato, M. A., Steine, E., Foreman, R., et al. (2008). A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nature Biotechnology, 26(8), 916–924.Google Scholar
  158. 158.
    Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322(5903), 949–953.Google Scholar
  159. 159.
    Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I. I., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324(5928), 797–801.Google Scholar
  160. 160.
    Chou, B. K., Mali, P., Huang, X., Ye, Z., Dowey, S. N., Resar, L. M., et al. (2011). Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Research, 21(3), 518–529.Google Scholar
  161. 161.
    Chang, C. W., Lai, Y. S., Pawlik, K. M., Liu, K., Sun, C. W., Li, C., et al. (2009). Polycistronic lentiviral vector for ‘hit and run’ reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells, 27, 1042–1049.Google Scholar
  162. 162.
    Aoi, T., Yaem, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., et al. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 321(5889), 699–702.Google Scholar
  163. 163.
    Wang, W., Lin, C., Lu, D., Ning, Z., Cox, T., Melvin, D., et al. (2008). Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105(27), 9290–9295.Google Scholar
  164. 164.
    Okita, K., & Yamanaka, S. (2010). Induction of pluripotency by defined factors. Experimental Cell Research, 316(16), 2565–2570.Google Scholar
  165. 165.
    Cary, L. C., Goebel, M., Corsaro, B. G., Wang, H. G., Rosen, E., & Fraser, M. J. (1989). Transposon mutagenesis of baculoviruses: Analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology, 172(1), 156–169.Google Scholar
  166. 166.
    Fraser, M. J., Ciszczon, T., Elick, T., & Bauser, C. (1996). Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Molecular Biology, 5(2), 141–151.Google Scholar
  167. 167.
    Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., Hämäläinen, R., et al. (2009). PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458(7239), 766–770.Google Scholar
  168. 168.
    Mermer, B., Colb, M., & Krontiris, T. G. (1987). A family of short, interspersed repeats is associated with tandemly repetitive DNA in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 84(10), 3320–3324.Google Scholar
  169. 169.
    Li, Z., Yang, C. S., Nakashima, K., & Rana, T. M. (2011). Small RNA-mediated regulation of iPS cell generation. The EMBO Journal, 30(5), 823–834.Google Scholar
  170. 170.
    Anokye-Danso, F., Trivedi, C. M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., et al. (2011). Highly efficient miRNA -mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8(4), 376–388.Google Scholar
  171. 171.
    Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cell with synthetic modified mRNA. Cell Stem Cell, 7, 618–630.Google Scholar
  172. 172.
    Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4(6), 472–476.Google Scholar
  173. 173.
    Shi, Y., Desponts, C., Do, J. T., Hahm, H. S., Schöler, H. R., & Ding, S. (2008). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell, 3(5), 568–574.Google Scholar
  174. 174.
    Mikkelsen, T. S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., et al. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature, 454(7200), 49–55.Google Scholar
  175. 175.
    Plath, K., & Lowry, W. E. (2011). Progress in understanding reprogramming to the induced pluripotent state. Nature Reviews Genetics, 12(4), 253–265.Google Scholar
  176. 176.
    Djuric, U., & Ellis, J. (2010). Epigenetics of induced pluripotency, the seven-headed dragon. Stem Cell Research & Therapy, 1(1), 3. doi: 10.1186/scrt3.Google Scholar
  177. 177.
    Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38(4), 431–440.Google Scholar
  178. 178.
    Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R., Takahashi, K., et al. (2007). Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biology, 9(6), 625–635.Google Scholar
  179. 179.
    Jackson-Grusby, L., Beard, C., Possemato, R., Tudor, M., Fambrough, D., Csankovszki, G., et al. (2001). Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genetics, 27(1), 31–39.Google Scholar
  180. 180.
    Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., Tan, K. Y., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28(8), 848–855.Google Scholar
  181. 181.
    Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467(7313), 285–290.Google Scholar
  182. 182.
    Wilson, K. D., Venkatasubrahmanyam, S., Jia, F., Sun, N., Butte, A. J., & Wu, J. C. (2009). MicroRNA profiling of human-induced pluripotent stem cells. Stem Cells and Development, 18(5), 749–758.Google Scholar
  183. 183.
    Zhang, Y., Wang, D., Chen, M., Yang, B., Zhang, F., & Cao, K. (2011). Intramyocardial transplantation of undifferentiated rat induced pluripotent stem cells causes tumorigenesis in the heart. PLoS One, 6(4), e19012.Google Scholar
  184. 184.
    Sullivan, G. J., Bai, Y., Fletcher, J., & Wilmut, I. (2010). Induced pluripotent stem cells: Epigenetic memories and practical implications. Molecular Human Reproduction, 16(12), 880–885.Google Scholar
  185. 185.
    Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., et al. (2000). Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Molecular Medicine, 6(2), 88–95.Google Scholar
  186. 186.
    Ho, P. J., Yen, M. L., Yet, S. F., & Yen, B. L. (2012). Current applications of human pluripotent stem cells: Possibilities and challenges. Cell Transplantation, 21(5), 801–814.Google Scholar
  187. 187.
    Miki, T. (2011). Amnion-derived stem cells: In quest of clinical applications. Stem Cell Research & Therapy, 2(3), 25. doi: 10.1186/scrt66.Google Scholar
  188. 188.
    Prusa, A., Marton, E., Rosner, M., Bernaschek, G., & Hengstschläger, M. (2003). Oct-4-expressing cells in human amniotic fuid: a new source for stem cell research? Human Reproduction, 18, 1489–1493.Google Scholar
  189. 189.
    Christodoulou, I., Kolisis, F. N., Papaevangeliou, D., & Zoumpourlis, V. (2013). Comparative evaluation of human mesenchymal stem cells of fetal (Wharton’s Jelly) and adult (adipose tissue) origin during prolonged in vitro expansion: considerations for cytotherapy. Stem Cells International. doi: 10.1155/2013/246134.
  190. 190.
    Parolini, O., & Soncini, M. (2006). Human placenta: A source of progenitor/stem cells? Journal of Reproductive Medicine and Endocrinology, 3, 117–126.Google Scholar
  191. 191.
    Murphy, S., Rosli, S., Acharya, R., Mathias, L., Lim, R., Wallace, E., et al. (2010). Amnion epithelial cell isolation and characterization for clinical use. Current Protocols in Stem Cell Biology, Chapter 1, Unit 1E.6. doi: 10.1002/9780470151808.sc01e06s13.
  192. 192.
    Portmann-Lanz, C. B., Schoeberlein, A., Huber, A., Sager, R., Malek, A., Holzgreve, W., et al. (2006). Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. American Journal of Obstetrics and Gynecology, 194, 664–673.Google Scholar
  193. 193.
    Ilancheran, S., Michalska, A., Peh, G., Wallace, E. M., Pera, M., & Manuelpillai, U. (2007). Stem cells derived from human fetal membranes display multilineage differentiation potential. Biology of Reproduction, 77, 577–588.Google Scholar
  194. 194.
    Li, H., Niederkorn, J. Y., Neelam, S., Mayhew, E., Word, R. A., McCulley, J. P., et al. (2005). Immunosuppressive factors secreted by human amniotic epithelial cells. Investigative Ophthalmology & Visual Science, 46, 900–907.Google Scholar
  195. 195.
    Niknejad, H., Peirovi, H., Jorjani, M., Ahmadiani, A., Ghanavi, J., & Seifalian, A. M. (2008). Properties of the amniotic membrane for potential use in tissue engineering. European Cells & Materials, 15, 88–99.Google Scholar
  196. 196.
    Sato, K., Ozaki, K., Mori, M., Muroi, M., & Ozawa, K. (2010). Mesenchymal stromal cells for graft versus host disease: Basic aspects and clinical outcomes. Journal of Clinical and Experimental Hematopathology, 50(2), 79–89.Google Scholar
  197. 197.
    Lubis, A. M. T., & Lubis, V. K. (2012). Adult bone marrow stem cells in cartilage therapy. Acta Medica Indonesiana (The Indonesian Journal of Internal Medicine), 44(1), 62–68.Google Scholar
  198. 198.
    Mohty, M., & Apperley, J. F. (2010). Long-term physiological side effects after allogenic bone marrow transplantation. Hematology, 2010(1), 229–236.Google Scholar
  199. 199.
    Ramos-Mejía, V., Montes, R., Bueno, C., Ayllón, V., Real, P. J., Rodríguez, R., et al. (2012). Residual expression of the reprogramming factors prevents differentiation of iPSC generated from human fibroblasts and cord blood CD34+ progenitors. PLoS One, 7(4), e35824. doi: 10.1371/journal.pone.0035824.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Katarzyna Skowron
    • 1
  • Marcin Tomsia
    • 2
  • Piotr Czekaj
    • 2
    Email author
  1. 1.Students Scientific SocietyMedical University of SilesiaKatowicePoland
  2. 2.Department of Histology and EmbryologyMedical University of SilesiaKatowicePoland

Personalised recommendations