Skip to main content
Log in

Covalent Immobilization of Alcohol Dehydrogenase (ADH2) from Haloferax volcanii: How to Maximize Activity and Optimize Performance of Halophilic Enzymes

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Alcohol dehydrogenase from halophilic archaeon Haloferax volcanii (HvADH2) was successfully covalently immobilized on metal-derivatized epoxy Sepabeads. The immobilization conditions were optimized by investigating several parameters that affect the halophilic enzyme–support interaction. The highest immobilization efficiency (100 %) and retention activity (60 %) were achieved after 48 h of incubation of the enzyme with Ni-epoxy Sepabeads support in 100 mM Tris–HCl buffer, pH 8, containing 3 M KCl at 5 °C. No significant stabilization was observed after blocking the unreacted epoxy groups with commonly used hydrophilic agents. A significant increase in the stability of the immobilized enzyme was achieved by blocking the unreacted epoxy groups with ethylamine. The immobilization process increased the enzyme stability, thermal activity, and organic solvents tolerance when compared to its soluble counterpart, indicating that the immobilization enhances the structural and conformational stability. One step purification–immobilization of this enzyme has been carried out on metal chelate-epoxy Sepabeads, as an efficient method to obtain immobilized biocatalyst directly from bacterial extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Honda, K., Ishige, T., Kataoka, M., & Shimizu, S. (2006). Microbial and enzymatic processes for the production of chiral compounds. In R. N. Patel (Ed.), Biocatalysis in the pharmaceutical and biotechnology industries (pp. 529–546). New York: Taylor and Francis.

    Google Scholar 

  2. Faber, K. (1997). Biotranformations in organic chemistry (pp. 10–16). Berlin: Springer.

    Book  Google Scholar 

  3. Margolin, A. L. (1993). Enzymes in the synthesis of chiral drugs. Enzyme and Microbial Technology, 15, 266–280.

    Article  CAS  Google Scholar 

  4. Yang, Z. H., Zeng, R., Chang, X., Li, X. K., & Wang, G. H. (2008). Toxicity of aromatic ketone to yeast cell and improvement of the asymmetric reduction of aromatic ketone catalyzed by yeast cell with the introduction of resin adsorption. Food Technology and Biotechnology, 46, 322–327.

    CAS  Google Scholar 

  5. Goldberg, K., Schroer, K., Lütz, S., & Liese, A. (2007). Biocatalytic ketone reduction-a powerful tool for the production of chiral alcohols-part I: Processes with isolated enzymes. Applied Microbiology and Biotechnology, 76, 237–248.

    Article  CAS  Google Scholar 

  6. Hanefeld, U., Gardossi, L., & Magner, E. (2009). Understanding enzyme immobilisation. Chemical Society Reviews, 38, 453–468.

    Article  CAS  Google Scholar 

  7. Sheldon, R. A. (2007). Enzyme immobilization: The quest for optimum performance. Advanced Synthesis and Catalysis, 349, 1289–1307.

    Article  CAS  Google Scholar 

  8. Garcia-Galan, C., Berenguer-Murcia, A., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis and Catalysis, 353, 2885–2904.

    Article  CAS  Google Scholar 

  9. Mateo, C., Abian, O., Fernández-Lorente, G., Pessela, B. C., Grazu, V., Guisan, J. M., et al. (2006). Immobilization-stabilization of enzymes by multipoint covalent attachment on supports activated with epoxy groups. In G. F. Bickerstaff (Ed.), Immobilization of enzymes and cells. Methods in biotechnology (Vol. 22, pp. 47–55). Totowa: Humana.

    Chapter  Google Scholar 

  10. Mateo, C., Abian, C., Fernández- Lorente, G., Predoche, J., Fernández- Lafuente, R., & Guisan, J. M. (2002). Sepabeads: A novel epoxy-support for stabilization of industrial enzymes via very intense multipoint covalent attachment. Biotechnology Progress, 18, 629–634.

    Article  CAS  Google Scholar 

  11. Katchalski-Katzir, E., & Kraemer, D. M. (2000). Eupergit® C, a carrier for immobilization of enzymes of industrial potential. Journal of Molecular Catalysis B, 10, 157–176.

    Article  CAS  Google Scholar 

  12. Mateo, C., Abian, O., Fernandez-Lafuente, R., & Guisan, J. M. (2000). Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzyme and Microbial Technology, 26, 509–515.

    Article  CAS  Google Scholar 

  13. Adams, J. P., Collis, A. J., Henderson, R. K., & Sutton, P. W. (2010). Biotransformations in small-molecule pharmaceutical development. In J. Whittall & P. W. Sutton (Eds.), Practical methods for biocatalysis and biotransformations (pp. 1–82). Chichester: Wiley.

    Google Scholar 

  14. Mateo, C., Fernández-Lorente, G., Cortés, E., Garcia, J. L., Fernández-Lafuente, R., & Guisan, J. M. (2001). One-step purification, covalent immobilization, and additional stabilization of poly-His-tagged proteins using novel heterofunctional chelate-epoxy supports. Biotechnology and Bioengineering, 76, 269–276.

    Article  CAS  Google Scholar 

  15. Pessela, B. C., Mateo, C., Carrascosa, A. V., Vian, A., García, J. L., Rivas, G., et al. (2003). One-step purification, covalent immobilization, and additional stabilization of a thermophilic poly-His-tagged β-galactosidase from Thermus sp. strain T2 by using novel heterofunctional chelate-epoxy Sepabeads. Biomacromolecules, 4, 107–113.

    Article  CAS  Google Scholar 

  16. Timpson, L. M., Liliensiek, A. K., Alsafadi, D., Cassidy, J., Sharkey, M. A., Liddell, S., et al. (2013). A comparison of two novel alcohol dehydrogenase enzymes (ADH1 and ADH2) from the extreme halophile Haloferax volcanii. Applied Microbiology and Biotechnology, 97, 195–203.

    Article  CAS  Google Scholar 

  17. Alsafadi, D., & Paradisi, F. (2013). Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii. Extremophiles, 17, 115–122.

    Article  CAS  Google Scholar 

  18. Koch-Schmidt, A. C., Mosbach, K., & Werber, M. M. (1979). A comparative study on the stability of immobilized halophilic and non-halophilic malate dehydrogenase at various ionic strengths. European Journal of Biochemistry, 100, 213–218.

    Article  CAS  Google Scholar 

  19. Patel, S., Bagai, R., & Madamwar, D. (1999). Stabilization of a halophilic α-amylase by calcium alginate immobilization. Biocatalysis and Biotransformation, 14, 147–155.

    Article  Google Scholar 

  20. D’Souza, S. E., Altekar, W., & D’Souza, S. F. (1997). Immobilization of Haloferax mediterranei aldolase by cross-linking in a proteinic matrix: Stability and halophilic characteristics. World Journal of Microbiology and Biotechnology, 13, 561–564.

    Article  Google Scholar 

  21. Quaglia, D., Pori, M., Galletti, P., Emer, E., Paradisi, F., & Giacomini, D. (2013). His-tagged horse liver alcohol dehydrogenase: Immobilization and application in the bio-based enantioselective synthesis of (S)-arylpropanols. Process Biochemistry, 48, 810–818.

    Article  CAS  Google Scholar 

  22. Kastritis, P. L., Papandreou, N. C., & Hamodrakas, S. J. (2007). Haloadaptation: Insights from comparative modeling studies of halophilic archaeal DHFRs. International Journal of Biological Macromolecules, 41, 447–453.

    Article  CAS  Google Scholar 

  23. Roig, M. G., Bello, J. F., Moreno de Vega, M. A., Cachaza, J. M., & Kennedy, J. F. (1990). Liver alcohol dehydrogenase immobilized on polyvinylidene difluoride. Journal of Chemical Technology and Biotechnology, 49, 99–113.

    Article  CAS  Google Scholar 

  24. Goldberg, K., Krueger, A., Meinhardt, T., Kroutil, W., Mautner, B., & Liese, A. (2008). Novel immobilization routes for the covalent binding of an alcohol dehydrogenase from Rhodococcus ruber DSM 4454. Tetrahedron Asymmetry, 19, 1171–1173.

    Article  CAS  Google Scholar 

  25. Soni, S., Desai, J. D., & Devi, S. (2001). Immobilization of yeast alcohol dehydrogenase by entrapment and covalent binding to polymeric supports. Journal of Applied Polymer Science, 82, 1299–1305.

    Article  CAS  Google Scholar 

  26. Bolivar, J. M., Wilson, L., Ferrarotti, S. A., Guisan, J. M., Fernandez-Lafuente, R., & Mateo, C. (2006). Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose. Journal of Biotechnology, 125, 85–94.

    Article  CAS  Google Scholar 

  27. Hildebrand, F., & Lütz, S. (2006). Immobilisation of alcohol dehydrogenase from Lactobacillus brevis and its application in a plug-flow reactor. Tetrahedron Asymmetry, 17, 3219–3225.

    Article  CAS  Google Scholar 

  28. Timpson, L., Alsafadi, D., Mac Donnchadha, C., Liddell, S., Sharkey, M., & Paradisi, F. (2012). Characterization of alcohol dehydrogenase (ADH12) from Haloarcula marismortui, an extreme halophile from the Dead Sea. Extremophiles, 16, 57–66.

    Article  CAS  Google Scholar 

  29. Martins, S., Karmali, A., Andrade, J., & Serralheiro, M. L. (2006). Immobilized metal affinity chromatography of monoclonal immunoglobulin M against mutant amidase from Pseudomonas aeruginosa. Molecular Biotechnology, 33, 103–114.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding provided by the Islamic Development Bank (IDB) and by Science Foundation Ireland (SFI). The company Resindion S. R. L. (Milano, Italy) kindly donated the epoxy sepabeads.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Paradisi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alsafadi, D., Paradisi, F. Covalent Immobilization of Alcohol Dehydrogenase (ADH2) from Haloferax volcanii: How to Maximize Activity and Optimize Performance of Halophilic Enzymes. Mol Biotechnol 56, 240–247 (2014). https://doi.org/10.1007/s12033-013-9701-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9701-5

Keywords

Navigation