Skip to main content
Log in

Role of RNA Structure Motifs in IRES-Dependent Translation Initiation of the Coxsackievirus B3: New Insights for Developing Live-Attenuated Strains for Vaccines and Gene Therapy

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Internal ribosome entry site (IRES) elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, the mechanism of IRES-mediated translation initiation is still poorly understood. Translation initiation of the coxsackievirus B3 (CVB3), a causative agent of viral myocarditis, has been shown to be mediated by a highly ordered structure of the 5′ untranslated region (5′UTR), which harbors an IRES. Taking into account that efficient initiation of mRNA translation depends on temporally and spatially orchestrated sequence of RNA–protein and RNA–RNA interactions, and that, at present, little is known about these interactions, we aimed to describe recent advances in our understanding of molecular structures and biochemical functions of the translation initiation process. Thus, this review will explore the IRES elements as important RNA structures and the significance of these structures in providing an alternative mechanism of translation initiation of the CVB3 RNA. Since translation initiation is the first intracellular step during the CVB3 infection cycle, the IRES region provides an ideal target for antiviral therapies. Interestingly, the 5′ and 3′UTRs represent promising candidates for the study of CVB3 cardiovirulence and provide new insights for developing live-attenuated vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baboonian, C., Davies, M. J., Booth, J. C., & Mckenna, W. J. (1997). Coxsackie B viruses and human heart disease. Current Topics in Microbiology and Immunology, 223, 31–52.

    CAS  Google Scholar 

  2. Esfandiarei, M., & McManus, B. M. (2008). Molecular biology and pathogenesis of viral myocarditis. Annual Reviews of Pathology, 3, 127–155.

    CAS  Google Scholar 

  3. Boucek, M. M., Faro, A., Novick, R. J., Bennett, L. E., Keck, B. M., & Hosenpud, J. D. (2001). The registry of the International Society for Heart and Lung Transplantation: Fourth official pediatric report—2000. Journal of Heart and Lung Transplantation, 20, 39–52.

    CAS  Google Scholar 

  4. Yuan, J., Stein, D. A., Lim, T., Qiu, D., Coughlin, S., Liu, Z., et al. (2006). Inhibition of coxsackievirus B3 in cell cultures and in mice by peptide-conjugated morpholino oligomers targeting the internal ribosome entry site. Journal of Virology, 80, 11510–11519.

    CAS  Google Scholar 

  5. McManus, B. M., & Kandolf, R. (1991). Evolving concepts of cause, consequence, and control in myocarditis. Current Opinion in Cardiology, 6, 418–427.

    Google Scholar 

  6. Grist, N. R., & Reid, D. (1993). Epidemiology of viral infections of the heart. In J. E. Banatvala (Ed.), Viral infections of the heart (pp. 23–31). London: Edward Arnold.

    Google Scholar 

  7. Wang, A., Cheung, P. K. M., Zhang, H., Carthy, C. M., Bohunek, L., Wilson, J. E., et al. (2001). Specific inhibition of coxsackievirus B3 translation and replication by phosphorothioate antisense oligodeoxynucleotides. Antimicrobial Agents and Chemotherapy, 45(4), 1043–1052.

    CAS  Google Scholar 

  8. Bailey, J. M., & Tapprich, W. E. (2007). Structure of the 5′-nontranslated region of the coxsackievirus B3 genome: Chemical modification and comparative sequence analysis. Journal of Virology, 81(2), 650–668.

    CAS  Google Scholar 

  9. Nicholson, R., Pelletier, J., Le, S. Y., & Sonenberg, N. (1991). Structural and functional analysis of the ribosome landing pad of poliovirus type 2: In vivo translation studies. Journal of Virology, 65, 5886–5894.

    CAS  Google Scholar 

  10. Haller, A. A., Nguyen, J. H., & Semler, B. L. (1993). Minimum internal ribosome entry site required for poliovirus infectivity. Journal of Virology, 67, 7461–7471.

    CAS  Google Scholar 

  11. Barton, D. J., O’Donnell, B. J., & Flanegan, J. B. (2001). 5′ Cloverleaf in poliovirus RNA is a cis-acting replication element required for negative strand RNA synthesis. The EMBO Journal, 20, 1439–1448.

    CAS  Google Scholar 

  12. Murray, K. E., Steil, B. P., Roberts, A. W., & Barton, D. J. (2004). Replication of poliovirus RNA with complete internal ribosome entry site deletions. Journal of Virology, 78, 1393–1402.

    CAS  Google Scholar 

  13. Zell, R., & Stelzner, A. (1997). Application of genome sequence information to the classification of bovine enteroviruses: The importance of 5′- and 3′-nontranslated regions. Virus Research, 51, 213–229.

    CAS  Google Scholar 

  14. Malnou, C. E., Pöyry, T. A., Jackson, R. J., & Kean, K. M. (2002). Poliovirus internal ribosome entry segment structure alterations that specifically affect function in neuronal cells: Molecular genetic analysis. Journal of Virology, 76, 10617–10626.

    CAS  Google Scholar 

  15. Ohlenschläger, O., Wohnert, J., Bucci, E., Seitz, S., Hafner, S., Ramachandran, R., et al. (2004). The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. Structure, 12, 237–248.

    Google Scholar 

  16. Du, Z., Yu, J., Andino, R., & James, T. L. (2003). Extending the family of UNCG-like tetraloop motifs: NMR structure of a CACG tetraloop from coxsackievirus B3. Biochemistry, 42, 4373–4383.

    CAS  Google Scholar 

  17. Ihle, Y., Ohlenschläger, O., Häfner, S., Duchardt, E., Zacharias, M., Seitz, S., et al. (2005). A novel cGUUAg tetraloop structure with a conserved yYNMGg-type backbone conformation from cloverleaf 1 of bovine enterovirus 1 RNA. Nucleic Acids Research, 33, 2003–2011.

    CAS  Google Scholar 

  18. Herold, J., & Andino, R. (2001). Poliovirus RNA replication requires genome circularization through a protein–protein bridge. Molecular Cell, 7, 581–591.

    CAS  Google Scholar 

  19. Zell, R., Sidigi, K., Bucci, E., Stelzner, A., & Görlach, M. (2002). Determinants of the recognition of enteroviral cloverleaf RNA by coxsackie B3 proteinase 3C. RNA, 8, 188–201.

    CAS  Google Scholar 

  20. Fernandez-Miragall, O., Lòpez de Quinto, S., & Martinez-Salas, E. (2009). Relevance of RNA structure for the activity of picornavirus IRES elements. Virus Research, 139, 172–182.

    CAS  Google Scholar 

  21. Lyons, T., Murray, K. E., Roberts, A. W., & Barton, D. J. (2001). Poliovirus 5′ terminal cloverleaf RNA is required in cis for VPg uridylation and the initiation of negative-strand RNA synthesis. Journal of Virology, 75, 10696–10708.

    CAS  Google Scholar 

  22. Ishii, T., Shiroki, K., Hong, D. H., Aoki, T., Ohta, Y., Abe, S., et al. (1998). A new internal ribosome entry site 5′ boundary is required for poliovirus translation in a mouse system. Journal of Virology, 72, 2398–2405.

    CAS  Google Scholar 

  23. Ishii, T., Shiroki, K., Iwai, A., & Nomoto, A. (1999). Identification of a new element for RNA replication within the internal ribosome entry site of poliovirus RNA. Journal of General Virology, 80, 917–920.

    CAS  Google Scholar 

  24. Bradrick, S. S., Lieben, E. A., Carden, B. M., & Romero, J. R. (2001). A predicted secondary structure domain within the internal ribosome entry site of echovirus 12 mediates a cell-type specific block to viral replication. Journal of Virology, 75, 6472–6481.

    CAS  Google Scholar 

  25. Dunn, J. J., Chapman, N. M., Tracy, S., & Romero, J. R. (2000). Genomic determinants of cardiovirulence in coxsackievirus B3 clinical isolates: Localization to the 5′ nontranslated region. Journal of Virology, 74, 4787–4794.

    CAS  Google Scholar 

  26. Dunn, J. J., Bradrick, S. S., Chapman, N. M., Tracy, S. M., & Romero, J. R. (2003). The stem loop II within the 5′ nontranslated region of clinical coxsackievirus B3 genomes determines cariovirulence phenotype in a murine model. The Journal of Infectious Diseases, 187, 1552–1561.

    CAS  Google Scholar 

  27. Lee, C. K., Kono, K., Haas, E., Kim, K. S., Drescher, K. M., Chapman, N. M., et al. (2005). Characterization of an infectious cDNA copy of the genome of a naturally occurring, avirulent coxsackievirus B3 clinical isolate. Journal of General Virology, 86, 197–210.

    CAS  Google Scholar 

  28. De Jesus, N., Franco, D., Paul, A., Wimmer, E., & Cello, J. (2005). Mutation of a single conserved nucleotide between the cloverleaf and internal ribosome entry site attenuates poliovirus neurovirulence. Journal of Virology, 79, 14235–14243.

    Google Scholar 

  29. Macadam, A. J., Pollard, S. R., Ferguson, G., Dunn, G., Skuce, R., Almond, J., et al. (1991). The 5′ noncoding region of the type 2 poliovirus vaccine strain contains determinants of attenuation and temperature sensitivity. Virology, 181, 451–458.

    CAS  Google Scholar 

  30. Sean, P., Nguyen, J. H. C., & Semler, B. L. (2009). Altered interactions between stem-loop IV within the 5′ noncoding region of coxsackievirus RNA and poly (rC) binding protein 2: Effects on IRES-mediated translation and viral infectivity. Virology, 389, 45–58.

    CAS  Google Scholar 

  31. Du, Z., Ulyanov, N. B., Yu, J., Andino, R., & James, T. L. (2004). NMR structures of loop B RNAs from the stem-loop IV domain of the Enterovirus internal ribosome entry site: A single C to U substitution drastically changes the shape and flexibility of RNA. Biochemistry, 43, 5757–5771.

    CAS  Google Scholar 

  32. Evans, D., Dunn, G., Minor, P. D., Schild, G. C., Cann, A. J., Stanway, G., et al. (1985). Increased neurovirulence associated with a single nucleotide change in a noncoding region of the Sabin type 3 poliovaccine genome. Nature, 314, 548–550.

    CAS  Google Scholar 

  33. Skinner, M., Racaniello, V., Dunn, G., Cooper, J., Minor, P. D., & Almond, J. W. (1989). New model for the secondary structure of the 5′ non-coding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. Journal of Molecular Biology, 207, 379–392.

    CAS  Google Scholar 

  34. Hunziker, I. P., Cornell, C. T., & Whitton, J. L. (2007). Deletions within the 5′UTR of coxsackievirus B3: Consequences for virus translation and replication. Virology, 360, 120–128.

    CAS  Google Scholar 

  35. Liu, Z., Carthy, C. M., Cheung, P., Bohunek, L., Wilson, J. E., McManus, B. M., et al. (1999). Structural and functional analysis of the 5′ untranslated region of coxsackievirus B3 RNA: In vivo translational and infectivity studies of full-length mutants. Virology, 265, 206–217.

    CAS  Google Scholar 

  36. Yang, D., Wilson, J. E., Anderson, D. R., Bohunek, L., Cordeiro, C., Kandol, R., et al. (1997). In vitro mutational and inhibitory analysis of the cis-acting translational elements within the 5′ untranslated region of coxsackievirus B3: Potential targets for antiviral action of antisense oligomers. Virology, 228, 63–73.

    CAS  Google Scholar 

  37. Yang, D., Cheung, P., Sun, Y., Yuan, J., Zhang, H., Carthy, C. M., et al. (2003). A Shine-Dalgarno-like sequence mediates in vitro entry and subsequent scanning for translation initiation of coxsackievirus B3 RNA. Virology, 305, 31–43.

    CAS  Google Scholar 

  38. Ben M’hadheb-Gharbi, M., Gharbi, J., Paulous, S., Brocard, M., Komaromva, A., Aouni, M., et al. (2006). Effects of the Sabin-like mutations in domain V of the internal ribosome entry segment on translational efficiency of the coxsackievirus B3. Molecular Genetics and Genomics, 276, 402–412.

    Google Scholar 

  39. Ben M’hadheb-Gharbi, M., Kean, K. M., & Gharbi, J. (2009). Molecular analysis of the role of IRES stem-loop V in replicative capacities and translation efficiencies of coxsackievirus B3 mutants. Molecular Biology Reports, 36, 255–262.

    Google Scholar 

  40. Stewart, S. R., & Semler, B. L. (1997). RNA determinants of picornavirus cap-independent translation initiation. Seminars in Virology, 8, 242–255.

    CAS  Google Scholar 

  41. La Monica, N., & Racaniello, V. R. (1989). Differences in replication of attenuated and neurovirulent polioviruses in human neuroblastoma cell line SH-SY5Y. Journal of Virology, 63, 2357–2360.

    Google Scholar 

  42. Martìnez-Salas, E. (2008). The impact of RNA structure on picornavirus IRES activity. Trends in Microbiology, 16(5), 230–237.

    Google Scholar 

  43. Honda, M., Ping, L. H., & Rijnbrand, R. C. A. (1996). Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. Virology, 222(1), 31–42.

    CAS  Google Scholar 

  44. Martìnez-Salas, E., Regalado, M. P., & Domingo, E. (1996). Identification of an essential region for internal initiation of translation in the aphthovirus internal ribosome entry site and implications for viral evolution. Journal of Virology, 70(2), 992–998.

    Google Scholar 

  45. Barria, M. I., Gonzalez, A., & Vera-Otarola, J. (2009). Analysis of natural variants of the hepatitis C virus internal ribosome entry site reveals that primary sequence plays a key role in cap-independent translation. Nucleic Acids Research, 37, 957–971.

    CAS  Google Scholar 

  46. Martìnez-Salas, E., & Fernandez-Miragall, O. (2004). Picornavirus IRES: Structure function relationship. Current Pharmaceutical Design, 10, 3757–3767.

    Google Scholar 

  47. Jang, C. J., & Jan, E. (2010). Modular domains of the Dicistroviridae intergenic internal ribosome entry site. RNA, 16(6), 1182–1195.

    CAS  Google Scholar 

  48. Serrano, P., Ramajo, J., & Martìnez-Salas, E. (2009). Rescue of internal initiation of translation by RNA complementation provides evidence for a distribution of functions between individual IRES domains. Virology, 388(1), 221–229.

    CAS  Google Scholar 

  49. Fernandez, N., Fernandez-Miragall, O., & Ramajo, J. (2011). Structural basis for the biological relevance of the invariant apical stem in IRES-mediated translation. Nucleic Acids Research, 39, 8572–8585.

    CAS  Google Scholar 

  50. Yu, Y., Abaeva, I. S., Marintchev, A., Pestova, T. V., & Hellen, C. U. (2011). Common conformational changes induced in type 2 picornavirus IRESes by cognate trans-acting factors. Nucleic Acids Research, 39, 4851–4865.

    CAS  Google Scholar 

  51. Fernandez, N., Garcia-Sacristan, A., Ramajo, J., Briones, C., & Martinez-Salas, E. (2011). Structural analysis provides insights into the modular organization of picornavirus IRES. Virology, 409, 251–261.

    CAS  Google Scholar 

  52. Ramos, R., & Martìnez-Salas, E. (1999). Long-range RNA interactions between structural domains of the aphthovirus internal ribosome entry site (IRES). RNA, 5(10), 1374–1383.

    CAS  Google Scholar 

  53. Fernandez-Miragall, O., & Martìnez-Salas, E. (2003). Structural organization of a viral IRES depends on the integrity of the GNRA motif. RNA, 9, 1333–1344.

    CAS  Google Scholar 

  54. Fernandez-Miragall, O., Ramos, R., Ramajo, J., & Martinez-Salas, E. (2006). Evidence of reciprocal tertiary interactions between conserved motifs involved in organizing RNA structure essential for internal initiation of translation. RNA, 12, 223–234.

    CAS  Google Scholar 

  55. Bhattacharyya, S., Verma, B., Pandey, G., & Das, S. (2008). The structure and function of a cis-acting element located upstream of the IRES that influences coxsackievirus B3 RNA translation. Virology, 377, 345–354.

    CAS  Google Scholar 

  56. Bhattacharyya, S., & Das, S. (2005). Mapping of secondary structure of the spacer region within the 5′-untranslated region of the coxsackievirus B3 RNA: Possible role of an apical GAGA loop in binding La protein and influencing internal initiation of translation. Virus Research, 108, 89–100.

    CAS  Google Scholar 

  57. Bhattacharyya, S., & Das, S. (2006). An apical GAGA loop within 5′UTR of the coxsackievirus B3 RNA maintains structural organization of the IRES element required for efficient ribosome entry. RNA Biology, 3, 60–68.

    CAS  Google Scholar 

  58. Phelan, M., Banks, R. J., Conn, G., & Ramesh, V. (2004). NMR studies of the structure and Mg2+ binding properties of a conserved RNA motif of EMCV picornavirus IRES element. Nucleic Acids Research, 32(16), 4715–4724.

    CAS  Google Scholar 

  59. Lòpez de Quinto, S., & Martìnez-Salas, E. (1997). Conserved structural motifs located in distal loops of aphthovirus internal ribosome entry site domain 3 are required for internal initiation of translation. Journal of Virology, 71, 4171–4175.

    Google Scholar 

  60. Robertson, M. E. M., Seamons, R. A., & Belsham, G. J. (1999). A selection system for functional internal ribosome entry site (IRES) elements: Analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA, 5(9), 1167–1179.

    CAS  Google Scholar 

  61. Lyons, A. J., & Robertson, H. D. (2003). Detection of tRNA like structure through RNase P cleavage of viral internal ribosome entry site RNAs near the AUG start triplet. Journal of Biological Chemistry, 278(29), 26844–26850.

    CAS  Google Scholar 

  62. Nadal, A., Martell, M., & Lytle, J. R. (2002). Specific cleavage of hepatitis C virus RNA genome by human RNase P. Journal of Biological Chemistry, 277(34), 30606–30613.

    CAS  Google Scholar 

  63. Serrano, P., Gomez, J., & Martìnez-Salas, E. (2007). Characterization of a cyanobacterial RNase P ribozyme recognition motif in the IRES of foot-and-mouth disease virus reveals a unique structural element. RNA, 13(6), 849–859.

    CAS  Google Scholar 

  64. Martìnez-Salas, E., Piñeiro, D., & Fernàndez, N. (2012). Alternative mechanisms to initiate translation in eukaryotic mRNAs. Comparative and Functional Genomics, 2012, article ID 391546, 12 pages. doi:10.1155/2012/391546.

  65. Fernandez, N., & Martinez-Salas, E. (2010). Tailoring the switch from IRES-dependent to 5-end-dependent translation with the RNase P ribozyme. RNA, 16, 852–862.

    CAS  Google Scholar 

  66. Piron, M., Beguiristain, N., Nadal, A., Martinez-Salas, E., & Gomez, J. (2005). Characterizing the function and structural organization of the 5 tRNA-like motif within the hepatitis C virus quasispecies. Nucleic Acids Research, 33, 1487–1502.

    CAS  Google Scholar 

  67. Hernández, G. (2008). Was the initiation of translation in early eukaryotes IRES-driven? Trends in Biochemical Sciences, 33(2), 58–64.

    Google Scholar 

  68. Basu, A., Das, P., & Chaudhuri, S. (2011). Requirement of rRNA methylation for 80S ribosome assembly on a cohort of cellular Internal Ribosome Entry Sites. Molecular and Cellular Biology, 31, 4482–4499.

    CAS  Google Scholar 

  69. Horos, R., Ijspeert, H., & Pospisilova, D. (2012). Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood, 119, 262–272.

    CAS  Google Scholar 

  70. Martìnez-Azorìn, F., Remacha, M., Martìnez-Salas, E., & Ballesta, J. P. G. (2008). Internal translation initiation on the foot and-mouth disease virus IRES is affected by ribosomal stalk conformation. FEBS Letters, 582(20), 3029–3032.

    Google Scholar 

  71. Yang, C., Zhang, C., Dittman, J. D., & Whitham, S. A. (2009). Differential requirement of ribosomal protein S6 by plant RNA viruses with different translation initiation strategies. Virology, 390(2), 163–173.

    CAS  Google Scholar 

  72. Sudarsan, N., Barrick, J. E., & Breaker, R. R. (2003). Metabolite binding RNA domains are present in the genes of eukaryotes. RNA, 9, 644–647.

    CAS  Google Scholar 

  73. Fitzgerald, K. D., & Semler, B. L. (2009). Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochimica et Biophysica Acta, 1789, 518–528.

    CAS  Google Scholar 

  74. Cho, S., Kim, J. H., Back, S. H., & Jang, S. K. (2005). Polypyrimidine tract-binding protein enhances the internal ribosomal entry sitedependent translation of p27Kip1mRNA and modulates transition from G1to S phase. Molecular and Cellular Biology, 25, 1283–1297.

    CAS  Google Scholar 

  75. Giraud, S., Greco, A., Brink, M., Diaz, J. J., & Delafontaine, P. (2001). Translation initiation of the insulin-like growth factor I receptor mRNA is mediated by an internal ribosome entry site. Journal of Biological Chemistry, 276, 5668–5675.

    CAS  Google Scholar 

  76. Kolupaeva, V. G., Hellen, C. U., & Shatsky, I. N. (1996). Structural analysis of the interaction of the pyrimidine tract-binding protein with the internal ribosomal entry site of encephalomyocarditis virus and foot-and-mouth disease virus RNAs. RNA, 2, 1199–1212.

    CAS  Google Scholar 

  77. Mitchell, S. A., Brown, E. C., Coldwell, M. J., Jackson, R. J., & Willis, A. E. (2001). Protein factor requirements of the Apaf-1 internal ribosome entry segment: Roles of polypyrimidine tract binding protein and upstream of N-ras. Molecular and Cellular Biology, 21, 3364–3374.

    CAS  Google Scholar 

  78. Mitchell, S. A., Spriggs, K. A., Coldwell, M. J., Jackson, R. J., & Willis, A. E. (2003). The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Molecular Cell, 11, 757–771.

    CAS  Google Scholar 

  79. Mitchell, S. A., Spriggs, K. A., Bushell, M., Evans, J. R., Stoneley, M., Le Quesne, J. P., et al. (2005). Identification of a motif that mediates polypyrimidine tract-binding protein-dependent internal ribosome entry. Genes & Development, 19, 1556–1571.

    CAS  Google Scholar 

  80. Pickering, B. M., Mitchell, S. A., Evans, J. R., & Willis, A. E. (2003). Polypyrimidine tract binding protein and poly r(C) binding protein 1 interact with the BAG-1 IRES and stimulate its activity in vitro and in vivo. Nucleic Acids Research, 31, 639–646.

    CAS  Google Scholar 

  81. Holcik, M., & Korneluk, R. G. (2000). Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: Role of La autoantigen in XIAP translation. Molecular and Cellular Biology, 20, 4648–4657.

    CAS  Google Scholar 

  82. Marash, L., & Kimchi, A. (2005). DAP5 and IRES-mediated translation during programmed cell death. Cell Death and Differentiation, 12, 554–562.

    CAS  Google Scholar 

  83. Bonnal, S., Pileur, F., Orsini, C., Parker, F., Pujol, F., Prats, A. C., et al. (2005). Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. Journal of Biological Chemistry, 280, 4144–4153.

    CAS  Google Scholar 

  84. Holcik, M., Gordon, B. W., & Korneluk, R. G. (2003). The internal ribosome entry site-mediated translation of antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2. Molecular and Cellular Biology, 23, 280–288.

    CAS  Google Scholar 

  85. Nevins, T. A., Harder, Z. M., Korneluk, R. G., & Holcik, M. (2003). Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1. Journal of Biological Chemistry, 278, 3572–3579.

    CAS  Google Scholar 

  86. Warnakulasuriyarachchi, D., Cerquozzi, S., Cheung, H. H., & Holcik, M. (2004). Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element. Journal of Biological Chemistry, 279, 17148–17157.

    CAS  Google Scholar 

  87. Tinton, S. A., Schepens, B., Bruynooghe, Y., Beyaert, R., & Cornelis, S. (2005). Regulation of the cell-cycle-dependent internal ribosome entry site of the PITSLRE protein kinase: Roles of Unr (upstream of N-ras) protein and phosphorylated translation initiation factor eIF-2 alpha. Biochemical Journal, 385, 155–163.

    CAS  Google Scholar 

  88. Vagner, S., Touriol, C., Galy, B., Audigier, S., Gensac, M. C., Amalric, F., et al. (1996). Translation of CUG- but not AUG-initiated forms of human fibroblast growth factor 2 is activated in transformed and stressed cells. The Journal of Cell Biology, 135, 1391–1402.

    CAS  Google Scholar 

  89. Millard, S. S., Vidal, A., Markus, M., & Koff, A. (2000). A U-rich element in the 5′ untranslated region is necessary for the translation of p27 mRNA. Molecular and Cellular Biology, 20, 5947–5959.

    CAS  Google Scholar 

  90. Cheung, P. K. (2004). Specific protein interactions with the 5′- and 3′-untranslated regions of coxsackievirus B3 RNA. Retrospective Theses and Dissertations, University of British Columbia, pp. 1919–2007. http://hdl.handle.net/2429/15928.

  91. Cheung, P. K., Yuan, J., Zhang, H. M., Chau, D., Yanagawa, B., Suarez, A., et al. (2005). Specific interactions of mouse organ proteins with the 5′ untranslated region of coxsackievirus B3: Potential determinants of viral tissue tropism. Journal of Medical Virology, 77, 414–424.

    CAS  Google Scholar 

  92. Vagner, S., Galy, B., & Pyronnet, S. (2001). Irresistible IRES. Attracting the translation machinery to internal ribosome entry sites. EMBO Reports, 2, 893–898.

    CAS  Google Scholar 

  93. Zell, R., Ihle, Y., Seitz, S., Gündel, U., Wutzler, P., & Görlach, M. (2008). Poly (rC)-binding protein 2 interacts with the oligo (rC) tract of coxsackievirus B3. Biochemical and Biophysical Research Communications, 366, 917–921.

    CAS  Google Scholar 

  94. Dreyfuss, G., Kim, V. N., & Kataoka, N. (2002). Messenger-RNA binding proteins and the messages they carry. Nature Reviews Molecular Cell Biology, 3, 195–205.

    CAS  Google Scholar 

  95. Bieleski, L., Hindley, C., & Talbot, S. J. (2004). A polypyrimidine tract facilitates the expression of Kaposi’s sarcoma-associated herpesvirus vFLIP through an internal ribosome entry site. Journal of General Virology, 85, 615–620.

    CAS  Google Scholar 

  96. Wollerton, M. C., Gooding, C., Robinson, F., Brown, E. C., Jackson, R. J., & Smith, C. W. (2001). Differential alternative splicing activity of isoforms of polypyrimidine tract binding protein (PTB). RNA, 7, 819–832.

    CAS  Google Scholar 

  97. Cornelis, S., Tinton, S. A., Schepens, B., Bruynooghe, Y., & Beyaert, R. (2005). UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein. Nucleic Acids Research, 33, 3095–3108.

    CAS  Google Scholar 

  98. Kim, Y. K., Hahm, B., & Jang, S. K. (2000). Polypyrimidine tractbinding protein inhibits translation of bip mRNA. Journal of Molecular Biology, 304, 119–133.

    CAS  Google Scholar 

  99. Kaminski, A., Belsham, G. J., & Jackson, R. J. (1994). Translation of encephalomyocarditis virus RNA: Parameters influencing the selection of the internal initiation site. The EMBO Journal, 13, 1673–1681.

    CAS  Google Scholar 

  100. Anwar, A., Ali, N., Tanveer, R., & Siddiqui, A. (2000). Demonstration of functional requirement of polypyrimidine tract-binding protein by SELEX RNA during hepatitis C virus internal ribosome entry site-mediated translation initiation. Journal of Biological Chemistry, 275, 34231–34235.

    CAS  Google Scholar 

  101. Back, S. H., Shin, S., & Jang, S. K. (2002). Polypyrimidine tract binding proteins are cleaved by caspase-3 during apoptosis. Journal of Biological Chemistry, 277, 27200–27209.

    CAS  Google Scholar 

  102. Back, S. H., Kim, Y. K., Kim, W. J., Cho, S., Oh, H. R., Kim, J. E., et al. (2002). Translation of polioviral mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by polioviral 3C (pro). Journal of Virology, 76, 2529–2542.

    CAS  Google Scholar 

  103. Gooding, C., Kemp, P., & Smith, C. W. (2003). A novel polypyrimidine tract-binding protein paralog expressed in smooth muscle cells. Journal of Biological Chemistry, 278, 15201–15207.

    CAS  Google Scholar 

  104. Pilipenko, E. V., Viktorova, E. G., Guest, S. T., Agol, V. I., & Roos, R. P. (2001). Cell-specific proteins regulate viral RNA translation and virus-induced disease. The EMBO Journal, 20, 6899–6908.

    CAS  Google Scholar 

  105. Cheung, P., Zhang, M., Yuan, J., Chau, D., Yanagawa, B., McManus, B., et al. (2002). Specific interactions of HeLa cell proteins with coxsackievirus B3 RNA: La autoantigen binds differentially to multiple sites within the 5′untranslated region. Virus Research, 90, 23–36.

    CAS  Google Scholar 

  106. Cheung, P., Lim, T., Yuan, J., Zhang, M., Chau, D., McManus, B., et al. (2007). Specific interaction of HeLa cell proteins with coxsackievirus B3 3′UTR: La autoantigen binds the 3′ and 5′ UTRs independently of the poly(A) tail. Cellular Microbiology, 9, 1705–1715.

    CAS  Google Scholar 

  107. Ray, P. S., & Das, S. (2002). La autoantigen is required for the internal ribosome entry site-mediated translation of coxsackievirus B3 RNA. Nucleic Acid Research, 30, 4500–4508.

    CAS  Google Scholar 

  108. Costa-Mattioli, M., Svitkin, Y., & Sonenberg, N. (2004). La autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro. Molecular and Cellular Biology, 24, 6861–6870.

    CAS  Google Scholar 

  109. Gingras, A. C., Raught, B., & Sonenberg, N. (1999). eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Annual Review of Biochemistry, 68, 913–963.

    CAS  Google Scholar 

  110. Peek, R., Pruijn, G. J., & Van Venrooij, W. J. (1996). Interaction of the La (SS-B) autoantigen with small ribosomal subunits. European Journal of Biochemistry, 236, 649–655.

    CAS  Google Scholar 

  111. Kim, Y. K., & Jang, S. K. (1999). La protein is required for efficient translation driven by encephalomyocarditis virus internal ribosomal entry site. Journal of General Virology, 80, 3159–3166.

    CAS  Google Scholar 

  112. Ali, N., & Siddiqui, A. (1997). The La antigen binds 5′ noncoding region of the hepatitis C virus RNA in the context of the initiator AUG codon and stimulates internal ribosome entry site-mediated translation. Proceedings of the National Academy of Sciences of the United States of America, 94, 2249–2254.

    CAS  Google Scholar 

  113. Walter, B. L., Parsley, T. B., Ehrenfeld, E., & Semler, B. L. (2002). Distinct poly (rC) binding protein KH domain determinants for poliovirus translation initiation and viral RNA replication. Journal of Virology, 76, 12008–12022.

    CAS  Google Scholar 

  114. Makeyev, A. V., & Liebhaber, S. A. (2002). The poly(C)-binding proteins: A multiplicity of functions and a search for mechanisms. RNA, 8, 265–278.

    CAS  Google Scholar 

  115. Blyn, L. B., Towner, J. S., Semler, B. L., & Ehrenfeld, E. (1997). Requirement of poly (rC) binding protein 2 for translation of poliovirus RNA. Journal of Virology, 71, 6243–6246.

    CAS  Google Scholar 

  116. Sean, P., Nguyen, J. H., & Semler, B. L. (2008). The linker domain of poly(rC) binding protein 2 is a major determinant in poliovirus cap-independent translation. Virology, 378, 243–253.

    CAS  Google Scholar 

  117. Bedard, K. M., Daijogo, S., & Semler, B. L. (2007). A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation. The EMBO Journal, 26, 459–467.

    CAS  Google Scholar 

  118. Stoneley, M., Subkhankulova, T., Le Quesne, J. P., Coldwell, M. J., Jopling, C. L., Belsham, G. J., et al. (2000). Analysis of the c-myc IRES: A potential role for cell-type specific trans-acting factors and the nuclear compartment. Nucleic Acids Research, 28, 687.

    CAS  Google Scholar 

  119. Jackson, R. J., Hellen, C. U., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews Molecular Cellular Biology, 11, 113–127.

    CAS  Google Scholar 

  120. De Breyne, S., Yu, Y., Unbehaun, A., Pestova, T. V., & Hellen, C. U. (2009). Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites. Proceedings of the National Academy of Sciences of the United States of America, 106, 9197–9202.

    Google Scholar 

  121. Kolupaeva, V. G., Lomakin, I. B., Pestova, T. V., & Hellen, C. U. (2003). Eukaryotic initiation factors 4G and 4A mediate conformational changes downstream of the initiation codon of the encephalomyocarditis virus internal ribosomal entry site. Molecular and Cellular Biology, 23, 687–698.

    CAS  Google Scholar 

  122. Jackson, R. J. (2005). Alternative mechanisms of initiating translation of mammalian mRNAs. Biochemical Society Transactions, 33, 1231–1241.

    CAS  Google Scholar 

  123. Bassili, G., Tzima, E., Song, Y., Saleh, L., Ochs, K., & Niepmann, M. (2004). Sequence and secondary structure requirements in a highly conserved element for foot-and-mouth disease virus internal ribosome entry site activity and eIF4G binding. Journal of General Virology, 85, 2555–2565.

    CAS  Google Scholar 

  124. Geary, C., Baudrey, S., & Jaeger, L. (2008). Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors. Nucleic Acids Research, 36, 1138–1152.

    CAS  Google Scholar 

  125. Yu, Y., Sweeney, T. R., Kafasla, P., Jackson, R. J., Pestova, T. V., & Hellen, C. U. T. (2011). The mechanism of translation initiation on Aichivirus RNA mediated by a novel type of picornavirus IRES. The EMBO Journal, 30, 4423–4436.

    CAS  Google Scholar 

  126. Brown, E. A., Day, S. P., Jansen, R. W., & Lemon, S. M. (1991). The 5′ nontranslated region of hepatitis A virus RNA: Secondary structure and elements required for translation in vitro. Journal of Virology, 65, 5828–5838.

    CAS  Google Scholar 

  127. Ali, I. K., McKendrick, L., Morley, S. J., & Jackson, R. J. (2001). Activity of the hepatitis A virus IRES requires association between the cap-binding translation initiation factor (eIF4E) and eIF4G. Journal of Virology, 75, 7854–7863.

    CAS  Google Scholar 

  128. Pestova, T. V., Lorsch, J. R., & Hellen, C. U. T. (2007). The mechanism of translation initiation in Eukaryotes. In M. B. Mathews, N. Sonenberg, & J. B. W. Hershey (Eds.), Translational Control in Biology and Medicine (pp. 87–128). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  129. Pisarev, A. V., Hellen, C. U. T., & Pestova, T. V. (2007). Recycling of eukaryotic post-termination ribosomal complexes. Cell, 131, 286–299.

    CAS  Google Scholar 

  130. Doudna, J. A., & Sarnow, P. (2007). Translation initiation by viral internal ribosome entry sites. In M. B. Mathews, N. Sonenberg, & J. B. W. Hershey (Eds.), Translational Control in Biology and Medicine (pp. 297–318). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  131. Hellen, C. U. T., & Sarnow, P. (2001). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes & Development, 15, 1593–1612.

    CAS  Google Scholar 

  132. Chen, T. C., Weng, K. F., Chang, S. C., Lin, J. Y., Huang, P. N., & Shih, S. R. (2008). Development of antiviral agents for enteroviruses. Journal of Antimicrobial Chemotherapy, 62, 1169–1173.

    CAS  Google Scholar 

  133. Hinton, T. M., & Crabb, B. S. (2001). The novel picornavirus Equine rhinitis B virus contains a strong type II internal ribosomal entry site which functions similarly to that of Encephalomyocarditis virus. Journal of General Virology, 82, 2257–2269.

    CAS  Google Scholar 

  134. Klump, W. M., Bergmann, I., Muller, B. C., Ameis, D., & Kandolf, R. (1990). Complete nucleotide sequence of infectious coxsackievirus B3 cDNA: Two initial 5′ uridine residues are regained during plus-strand RNA synthesis. Journal of Virology, 64, 1573–1583.

    CAS  Google Scholar 

  135. Minor, P. D. (1992). The molecular biology of poliovirus. Journal of General Virology, 73, 3065–3077.

    CAS  Google Scholar 

  136. Bowles, N. E., & Towbin, J. A. (1998). Molecular aspects of myocarditis. Current Opinion in Cardiology, 13, 179–184.

    CAS  Google Scholar 

  137. Gromeier, M., Bossert, B., Arita, M., Nomoto, A., & Wimmer, E. (1999). Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. Journal of Virology, 73, 958–964.

    CAS  Google Scholar 

  138. Verma, B., Ponnuswamy, A., Gnanasundram, S. V., & Das, S. (2011). Cryptic AUG is important for 48S ribosomal assembly during internal initiation of translation of coxsackievirus B3 RNA. Journal of General Virology, 92, 2310–2319.

    CAS  Google Scholar 

  139. Pilipenko, E. V., Gmyl, A. P., Maslova, S. V., Svitkin, Y. V., Sinyakov, A. N., & Agol, V. I. (1992). Prokaryotic-like cis elements in the cap independent internal initiation of translation on picornavirus RNA. Cell, 68, 119–131.

    CAS  Google Scholar 

  140. Scheper, G. C., Voorma, H. G., & Thomas, A. A. M. (1994). Basepairing with 18S ribosomal RNA in internal initiation of translation. FEBS Letters, 352, 271–275.

    CAS  Google Scholar 

  141. Pestova, T. V., Hellen, C. U. T., & Wimmer, E. (1991). Translation of poliovirus RNA: Role of an essential cis-acting oligopyrimidine element within the 5′ nontranslated region and involvement of a cellular 57–kilodalton protein. Journal of Virology, 65, 6194–6204.

    CAS  Google Scholar 

  142. Le, S. Y., Chen, H. J., Sonenberg, N., & Maizel, J. V. (1992). Conserved tertiary structure elements in the 5′ untranslated region of human enteroviruses and rhinoviruses. Virology, 1991, 858–866.

    Google Scholar 

  143. Meerovitch, K., Nicholson, R., & Sonenberg, N. (1991). In vitro mutational analysis of cis-acting RNA translational elements within the poliovirus type 2 5′ untranslated region. Journal of Virology, 65, 5895–5901.

    CAS  Google Scholar 

  144. Rohll, J. B., Percy, N., Ley, R., Evans, D. J., Almond, J. W., & Barclay, W. S. (1994). The 5′-untranslated regions of picornavirus RNAs contain independent functional domains essential for RNA replication and translation. Journal of Virology, 68, 4384–4391.

    CAS  Google Scholar 

  145. Jackson, R. J., Howell, M. T., & Kaminski, A. (1990). The novel mechanism of initiation of picornavirus RNA translation. Trends in Biochemical Sciences, 15, 477–483.

    Google Scholar 

  146. Pelletier, J., & Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 334, 320–325.

    CAS  Google Scholar 

  147. Brown, E. A., Zajac, A. J., & Lemon, S. M. (1994). In vitro characterization of an internal ribosomal entry site (IRES) present within the 5′ nontranlated region of hepatitis A virus: Comparison with the IRES of encephalomyocarditis virus. Journal of Virology, 68, 1066–1074.

    CAS  Google Scholar 

  148. Kaminski, A., Howell, M. T., & Jackson, R. J. (1990). Initiation of encephalomyocarditis virus RNA translation: The authentic initiation site is not selected by a scanning mechanism. The EMBO Journal, 9, 3753–3759.

    CAS  Google Scholar 

  149. Kolupaeva, V. G., Pestova, T. V., Hellen, C. U. T., & Shatsky, I. N. (1998). Translation eukaryotic initiation factor 4G recognises a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. Journal of Biological Chemistry, 273, 18599–18604.

    CAS  Google Scholar 

  150. Belsham, G. J., & Sonenberg, N. (1996). RNA–protein interactions in regulation of Picornavirus RNA translation. Micobiological Reviews, 60(3), 499–511.

    CAS  Google Scholar 

  151. Nomoto, A., Kohara, M., Kuge, S., Kawamura, N., Arita, M., Komatsu, T., et al. (1987). Study on virulence of poliovirus type I using in vitro modified viruses. In M. A. Brinton & R. R. Rueckert (Eds.), Positive strand RNA viruses (pp. 437–452). New York: Alan R. Liss Inc.

    Google Scholar 

  152. Ren, R., Moss, E. G., & Racaniello, V. R. (1991). Identification of two determinants that attenuate vaccine-related type-2 poliovirus. Journal of Virology, 65, 1377–1382.

    CAS  Google Scholar 

  153. Westrop, G. D., Evans, D. M. A., Minor, P. D., Magrath, D., Schild, G. C., & Almond, J. W. (1987). Investigation of the molecular basis of attenuation in the Sabin type 3 vaccine using novel recombinant polioviruses constructed from infectious cDNA. In D. J. Rowlands, M. A. Mayo, & B. W. J. Mahy (Eds.), The molecular biology of the positive strand RNA viruses (pp. 53–60). New York: Alan R. Liss Inc.

    Google Scholar 

  154. Macadam, A. J., Stone, D. M., Almond, J. W., & Minor, P. D. (1994). The 5′ noncoding region and virulence of poliovirus vaccine strains. Trends in Microbiology, 2, 449–454.

    CAS  Google Scholar 

  155. Guest, S., Pilipenko, E., Sharma, K., Chumakov, K., & Roos, R. P. (2004). Molecular mechanisms of attenuation of the Sabin strain of poliovirus type 3. Journal of Virology, 78, 11097–11107.

    CAS  Google Scholar 

  156. Svitkin, Y. V., Maslova, S. V., & Agol, V. I. (1985). The genomes of attenuated and virulent poliovirus strains differ in their in vitro translation efficiencies. Virology, 147, 243–252.

    CAS  Google Scholar 

  157. Svitkin, Y. V., Pestova, A. E., Maslova, S. V., & Agol, V. I. (1988). Point mutations modify the response of poliovirus RNA to a translation initiation factor: a comparison of neurovirulent and attenuated strains. Virology, 166, 394–404.

    CAS  Google Scholar 

  158. Svitkin, Y. V., Cammack, N., Minor, P. D., & Almond, J. W. (1990). Translation deficiency of the Sabin type 3 poliovirus genome: association with an attenuating mutation C472-U. Virology, 175, 103–109.

    CAS  Google Scholar 

  159. Macadam, A. J., Ferguson, G., Burlison, J., Stone, D., Skuce, R., Almond, J. W., et al. (1992). Correlation of RNA secondary structure and attenuation of Sabin vaccine strains of poliovirus in tissue culture. Virology, 189, 415–422.

    CAS  Google Scholar 

  160. Malnou, E. C., Werner, A., Borman, M. A., Westhof, E., & Kean, M. K. (2004). Effects of vaccine strain mutations in domain V of the internal ribosome entry segment compared in the wild type poliovirus type 1 context. Journal of Biological Chemistry, 279, 10261–10269.

    CAS  Google Scholar 

  161. Souii, A., Ben M’hadheb-Gharbi, M., Sargueil, B., Brossard, A., Chamond, N., Aouni, M., et al. (2013). Ribosomal initiation complex assembly within the wild-strain of coxsackievirus B3 and live-attenuated Sabin3-like IRESes during the initiation of translation. International Journal of Molecular Sciences, 14, 4400–4418.

    CAS  Google Scholar 

  162. Ochs, K., Zeller, A., Saleh, L., Bassili, G., Song, Y., Sonntag, A., et al. (2003). Impaired binding of standard initiation factors mediates poliovirus translation attenuation. Journal of Virology, 77, 115–122.

    CAS  Google Scholar 

  163. Poyry, T. A., Hentze, M. W., & Jackson, R. J. (2001). Construction of regulatable picornavirus IRESes as a test of current models of the mechanism of internal translation initiation. RNA, 7, 647–660.

    CAS  Google Scholar 

  164. Locker, N., Easton, L. E., & Lukavsky, P. J. (2007). HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly. The EMBO Journal, 26, 795–805.

    CAS  Google Scholar 

  165. Lukavsky, P. J. (2009). Structure and function of HCV IRES domains. Virus Research, 139, 166–171.

    CAS  Google Scholar 

  166. Pestova, T. V., de Breyne, S., Pisarev, A. V., Abaeva, I. S., & Hellen, C. U. (2008). eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: a common role of domain II. The EMBO Journal, 27, 1060–1072.

    CAS  Google Scholar 

  167. Stoneley, M., & Willis, A. E. (2004). Cellular internal ribosome entry segments: Structures, trans-acting factors and regulation of gene expression. Oncogene, 23, 3200–3207.

    CAS  Google Scholar 

  168. Belsham, G. J., & Sonenberg, N. (2000). Picornavirus RNA translation: Roles for cellular proteins. Trends in Microbiology, 8, 330–335.

    CAS  Google Scholar 

  169. De Breyne, S., Yu, Y., Pestova, T. V., & Hellen, C. U. T. (2008). Factor requirements for translation initiation on the Simian picornavirus internal ribosomal entry site. RNA, 14, 367–380.

    Google Scholar 

  170. Browning, K. S., Gallie, D. R., Hershey, J. W., Hinnebusch, A. G., Maitra, U., Merrick, W. C., et al. (2001). Unified nomenclature for the subunits of eukaryotic initiation factor 3. Trends in Biochemical Sciences, 26, 284.

    CAS  Google Scholar 

  171. Martineau, Y., Derry, M. C., Wang, X., Yanagiya, A., Berlanga, J. J., Shyu, A. B., et al. (2008). Poly(A)-binding protein-interacting protein 1 binds to eukaryotic translation initiation factor 3 to stimulate translation. Molecular and Cellular Biology, 28, 6658–6667.

    CAS  Google Scholar 

  172. Hinnebusch, A. G. (2006). eIF3: A versatile scaffold for translation initiation complexes. Trends in Biochemical Sciences, 31, 553–562.

    CAS  Google Scholar 

  173. López De Quinto, S., Lafuente, E., & Martίnez-Salas, E. (2001). IRES interaction with translation initiation factors: Functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA, 7, 1213–1226.

    Google Scholar 

  174. Gradi, A., Imataka, H., Svitkin, Y. V., Rom, E., Raught, B., Morino, S., et al. (1998). A novel functional human eukaryotic translation initiation factor 4G. Molecular and Cellular Biology, 18, 334–342.

    CAS  Google Scholar 

  175. Pulido, M. R., Serrano, P., Sáiz, M., & Martínez-Salas, E. (2007). Foot-and-mouth disease virus infection induces proteolytic cleavage of PTB, eIF3a, b, and PABP RNA-binding proteins. Virology, 364, 466–474.

    Google Scholar 

  176. Imataka, H., Gradi, A., & Sonenberg, N. (1998). A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. The EMBO Journal, 17, 7480–7489.

    CAS  Google Scholar 

  177. Korneeva, N. L., Lamphear, B. J., Hennigan, F. L. C., Merrick, W. C., & Rhoads, R. E. (2001). Characterization of the two eIF4A-binding sites on human eIF4G-1. Journal of Biological Chemistry, 276, 2872–2879.

    CAS  Google Scholar 

  178. Morino, S., Imataka, H., Svitkin, Y. V., Pestova, T. V., & Sonenberg, N. (2000). Eukaryotic translation initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core domain for cap dependent translation, and the C-terminal one-third functions as a modulatory region. Molecular and Cellular Biology, 20, 468–477.

    CAS  Google Scholar 

  179. Imataka, H., & Sonenberg, N. (1997). Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Molecular and Cellular Biology, 17, 6940–6947.

    CAS  Google Scholar 

  180. Lamphear, B. J., Kirchweger, R., Skern, T., & Rhoads, R. E. (1995). Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Journal of Biological Chemistry, 270, 21975–21983.

    CAS  Google Scholar 

  181. Ali, I. K., McKendrick, L., Morley, S. J., & Jackson, R. J. (2001). Truncated initiation factor eIF4G lacking an eIF4E binding site can support capped mRNA translation. The EMBO Journal, 20, 4233–4242.

    CAS  Google Scholar 

  182. Chau, D. H. W., Yuan, J., Zhang, H., Cheung, P., Lim, T., Liu, Z., et al. (2007). Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through mitochondrial injury and cleavage of eIF4GI but not DAP5/p97/NAT1. Apoptosis, 12, 513–524.

    CAS  Google Scholar 

  183. Souii, A., Ben M’hadheb-Gharbi, M., Aouni, M., & Gharbi, J. (2013). In vitro molecular characterization of RNA–proteins interactions during initiation of translation of a wild-type and a mutant coxsackievirus B3 RNAs. Molecular Biotechnology Part B: Applied Biochemistry and Biotechnology, 54(2), 515–527.

    CAS  Google Scholar 

  184. López de Quinto, S., & Martínez-Salas, E. (2000). Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal initiation of translation in vivo. RNA, 6, 1380–1392.

    Google Scholar 

  185. Kok, C. C., Phuektes, P., Bek, E., & McMinn, P. C. (2012). Modification of the untranslated regions of human enterovirus 71 impairs growth in a cell-specific manner. Journal of Virology, 86, 542–552.

    CAS  Google Scholar 

  186. Zoll, J., Heus, H. A., van Kuppeveld, F. J. M., & Melchers, W. J. G. (2009). The structure–function relationship of the enterovirus 3′UTR. Virus Research, 139, 209–216.

    CAS  Google Scholar 

  187. Melchers, W. J. G., Hoenderop, J. G. J., Bruins Slot, H. J., Pleij, C. W. A., Pilipenko, E. V., Agol, V. I., et al. (1997). Kissing of the two predominant hairpin loops in the coxsackie B virus 3′ untranslated region is the essential structural feature of the origin of replication required for negative-strand RNA synthesis. Journal of Virology, 71, 686–696.

    CAS  Google Scholar 

  188. Ye, X., Liu, Z., Hemida, M. G., & Yang, D. (2011). Targeted delivery of mutant tolerant anti-coxsackievirus artificial MicroRNAs using folate conjugated bacteriophage Phi29 pRNA. PLoS ONE, 6(6), e21215.

    CAS  Google Scholar 

  189. Dobrikova, E., Florez, P., Bradrick, S., & Gromeier, M. (2003). Activity of a type 1 picornavirus internal ribosomal entry site is determined by sequences within the 3′ nontranslated region. Proceedings of the National Academy of Sciences of the United States of America, 100, 15125–15130.

    CAS  Google Scholar 

  190. Dobrikova, E. Y., Grisham, R. N., Kaiser, C., Lin, J., & Gromeier, M. (2006). Competitive translation efficiency at the picornavirus type 1 internal ribosome entry site facilitated by viral cis and trans factors. Journal of Virology, 80, 3310–3321.

    CAS  Google Scholar 

  191. Verma, B., Bhattacharyya, S., & Das, S. (2010). Polypyrimidine tract binding protein interacts with coxsackievirus B3 RNA and influences its translation. Journal of General Virology, 91, 1245–1255.

    CAS  Google Scholar 

  192. Jacobson, S. J., Konings, D. A., & Sarnow, P. (1993). Biochemical and genetic evidence for a pseudoknot structure at the 3′ terminus of the poliovirus RNA genome and its role in viral RNA amplification. Journal of Virology, 67, 2961–2971.

    CAS  Google Scholar 

  193. Jacobson, A., & Peltz, S. W. (1996). Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annual Review of Biochemistry, 65, 693–739.

    CAS  Google Scholar 

  194. Merkle, I., van Ooij, M. J. M., van Kuppeveld, F. J. M., Glaudemans, D. H. R. F., Galama, J. M. D., Henke, A., et al. (2002). Biological significance of a human enterovirus B-specific RNA element in the 3′ nontranslated region. Journal of Virology, 76, 9900–9909.

    CAS  Google Scholar 

  195. Todd, S., Towner, J. S., Brown, D. M., & Semler, B. L. (1997). Replication competent picornaviruses with complete genomic RNA 3′ noncoding region deletions. Journal of Virology, 71, 8868–8874.

    CAS  Google Scholar 

  196. Isken, O., Grassmann, C. W., Sarisky, R. T., Kann, M., Zhang, S., Grosse, F., et al. (2003). Members of the NF90/NFAR protein group are involved in the life cycle of a positive-strand RNA virus. The EMBO Journal, 22, 5655–5665.

    CAS  Google Scholar 

  197. Isken, O., Grassmann, C. W., Yu, H., & Behrens, S. E. (2004). Complex signals in the genomic 3′ nontranslated region of bovine viral diarrhea virus coordinate translation and replication of the viral RNA. RNA, 10, 1637–1652.

    CAS  Google Scholar 

  198. Piron, M., Vende, P., Cohen, J., & Poncet, D. (1998). Rotavirus RNA binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. The EMBO Journal, 17, 5811–5821.

    CAS  Google Scholar 

  199. Serrano, P., Pulido, M. R., Saiz, M., & Martinez-Salas, E. (2006). The 3′ end of the foot-and-mouth disease virus genome establishes two distinct long-range RNA–RNA interactions with the 5′ end region. Journal of General Virology, 87, 3013–3022.

    CAS  Google Scholar 

  200. Vende, P., Piron, M., Castagnè, N., & Poncet, D. (2000). Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 39 end. Journal of Virology, 74, 7064–7071.

    CAS  Google Scholar 

  201. Souii, A., Gharbi, J., & Ben M’hadheb-Gharbi, M. (2013). Molecular analysis of RNA–RNA interactions between 5′ and 3′ untranslated regions during the initiation of translation of a cardiovirulent and a live-attenuated coxsackievirus B3 strains. International Journal of Molecular Sciences, 14, 4525–4544.

    CAS  Google Scholar 

  202. Lòpez de Quinto, S., Saiz, M., de la Morena, D., Sobrino, F., & Martinez-Salas, E. (2002). IRES-driven translation is stimulated separately by the FMDV 3′-NCR and poly(A) sequences. Nucleic Acid Research, 30, 4398–4405.

    Google Scholar 

  203. Willian, S., Chapman, N. M., Leser, J. S., Romero, J. R., & Tracy, S. (2000). Mutations in a conserved enteroviral RNA sequence: Correlation between predicted RNA structural alteration and diminished viability. Archives of Virology, 145, 2061–2086.

    CAS  Google Scholar 

  204. Shiroki, K., Ishii, T., Aoki, T., Ota, Y., Yang, W. X., Komatsu, T., et al. (1997). Host range phenotype induced by mutations in the internal ribosomal entry site of poliovirus RNA. Journal of Virology, 71, 1–8.

    CAS  Google Scholar 

  205. Ben M’hadheb-Gharbi, M., Paulous, S., Aouni, M., Kean, K. M., & Gharbi, J. (2007). The substitution U475 → C with Sabin3-like mutation within the IRES attenuate coxsackievirus B3 cardiovirulence. Molecular Biotechnology, 36, 52–60.

    Google Scholar 

  206. Tu, Z., Chapman, N., Hufnagel, G., Tracy, S., Romero, J. R., Barry, W. H., et al. (1995). The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5′ nontranslated region. Journal of Virology, 69, 4607–4618.

    CAS  Google Scholar 

  207. Lee, C., Maull, E., Chapman, N., Tracy, S., & Gauntt, C. (1997). Genomic regions of coxsackievirus B3 associated with cardiovirulence. Journal of Medical Virology, 52, 341–347.

    CAS  Google Scholar 

  208. Kim, D. S., & Nam, J. H. (2010). Characterization of attenuated coxsackievirus B3 strains and prospects of their application as live-attenuated vaccines. Expert Opinion on Biological Therapy, 10, 179–190.

    CAS  Google Scholar 

  209. Henke, A., Wagner, E., Whitton, J. L., Zell, R., & Stelzner, A. (1998). Protection of mice against lethal coxsackievirus B3 infection by using DNA immunization. Journal of Virology, 72, 8327–8331.

    CAS  Google Scholar 

  210. Knowlton, K. U., Jeon, E. S., Berkley, N., Wessely, R., & Huber, S. (1996). A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of the Woodruff variant of coxsackievirus B3. Journal of Virology, 70, 7811–7818.

    CAS  Google Scholar 

  211. Stadnick, E., Dan, M., Sadeghi, A., & Chantler, J. K. (2004). Attenuating mutations in coxsackievirus B3 map to a conformational epitope that comprises the “puff” region of VP2 and the “knob” of VP3, part of a putative binding site for coreceptor. Journal of Virology, 78, 13987–14002.

    CAS  Google Scholar 

  212. Dan, M., & Chantler, J. K. (2005). A genetically engineered attenuated coxsackievirus B3 strain protects mice against lethal infection. Journal of Virology, 79, 9285–9295.

    CAS  Google Scholar 

  213. See, D. M., & Tilles, J. G. (1994). Efficacy of a polyvalent inactivated-virus vaccine in protecting mice from infection with clinical strains of group B coxsackieviruses. Scandinavian Journal of Infectious Diseases, 26, 739–747.

    CAS  Google Scholar 

  214. Fohlman, J., Pauksen, K., Morein, B., Bjare, U., Ilback, N. G., & Friman, G. (1993). High yield production of an inactivated coxsackie B3 adjuvant vaccine with protective effect against experimental myocarditis. Scandinavian Journal of Infectious Diseases, 88, 103–108.

    CAS  Google Scholar 

  215. Kim, J. Y., Jeon, E. S., Lim, B. K., Kim, S. M., Chung, S. K., Kim, J. M., et al. (2005). Immunogenicity of a DNA vaccine for coxsackievirus B3 in mice: Protective effects of capsid proteins against viral challenge. Vaccine, 23, 1672–1679.

    CAS  Google Scholar 

  216. Lan, J., Gao, Z., Xiong, H., Chuai, X., Jin, Y., Li, J., et al. (2011). Generation of protective immune responses against coxsackievirus B3 challenge by DNA prime-protein boost vaccination. Vaccine, 29, 6894–6902.

    CAS  Google Scholar 

  217. Suguitan, A. L, Jr, McAuliffe, J., Mills, K. L., Jin, H., Duke, G., & Lu, B. (2006). Live- attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Medicine, 3, e360.

    Google Scholar 

  218. Henke, A., Jarasch, N., & Wutzler, P. (2003). Vaccination procedures against coxsackievirus-induced heart disease. Expert Review of Vaccines, 2, 805–815.

    Google Scholar 

  219. Kim, D. S., & Nam, J. H. (2011). Application of attenuated coxsackievirus B3 as a viral vector system for vaccines and gene therapy. Human Vaccines, 7(4), 410–416.

    CAS  Google Scholar 

  220. Henke, A., Jarasch, N., & Wutzler, P. (2008). Coxsackievirus B3 vaccines: Use as an expression vector for prevention of myocarditis. Expert Review of Vaccines, 7, 1557–1567.

    CAS  Google Scholar 

  221. Slifka, M. K., Pagarigan, R., Mena, I., Feuer, R., & Whitton, J. L. (2001). Using recombinant coxsackievirus B3 to evaluate the induction and protective efficacy of CD8+ T cells during picornavirus infection. Journal of Virology, 75, 2377–2387.

    CAS  Google Scholar 

  222. Miller, J. P., Geng, Y., Ng, H. L., Yang, O. O., & Krogstad, P. (2009). Packaging limits and stability of HIV-1 sequences in a coxsackievirus B vector. Vaccine, 27, 3992–4000.

    CAS  Google Scholar 

  223. Kim, D. S., Cho, Y. J., Kim, B. G., Lee, S. H., & Nam, J. H. (2010). Systematic analysis of attenuated coxsackievirus expressing a foreign gene as a viral vaccine vector. Vaccine, 28, 1234–1240.

    CAS  Google Scholar 

  224. Kim, D. S., Kim, H., Shim, S. H., Kim, C., Song, M., Kim, Y. H., et al. (2012). Coxsackievirus B3 used as a gene therapy vector to express functional FGF2. Gene Therapy, 19, 1159–1165.

    CAS  Google Scholar 

  225. Belsham, G. J. (2009). Divergent picornavirus IRES elements. Virus Research, 139(2), 183–192.

    CAS  Google Scholar 

  226. Kieft, J. S. (2008). Viral IRES RNA structures and ribosome interactions. Trends in Biochemical Sciences, 33(6), 274–283.

    CAS  Google Scholar 

  227. Sonenberg, N., & Dever, T. E. (2003). Eukaryotic translation initiation factors and regulators. Current Opinion in Structural Biology, 13, 56–63.

    CAS  Google Scholar 

  228. Semler, B. L., & Waterman, M. L. (2008). IRES-mediated pathways to polysomes: nuclear versus cytoplasmic routes. Trends in Microbiology, 16, 1–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawhar Gharbi.

Additional information

Amira Souii and Manel Ben M’hadheb-Gharbi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souii, A., Ben M’hadheb-Gharbi, M. & Gharbi, J. Role of RNA Structure Motifs in IRES-Dependent Translation Initiation of the Coxsackievirus B3: New Insights for Developing Live-Attenuated Strains for Vaccines and Gene Therapy. Mol Biotechnol 55, 179–202 (2013). https://doi.org/10.1007/s12033-013-9674-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9674-4

Keywords

Navigation