Skip to main content

Advertisement

Log in

Cross-Protective Effect of Antisense Oligonucleotide Developed Against the Common 3′ NCR of Influenza A Virus Genome

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The influenza A virus (IAV) has eight segmented single-stranded RNA genome containing a common and evolutionarily conserved non-coding region (NCRs) at 5′ and 3′ ends that are important for the virus replication. In this study, we designed an antisense oligonucleotide against the 3′ NCR of vital segments of the IAV genome to inhibit its replication. The results demonstrated that the co-transfection of Madine Darby Canine Kidney (MDCK) cells with the antisense oligonucleotide and the plasmids encoding the viral genes led to the down-regulation of the viral gene expression. The designed antisense molecules reduced the cytopathic effect caused by A/PR/8/34 (H1N1), A/Udorn/307/72 (H3N2), and A/New Caledonia/20/99 (H1N1) strains of IAV for almost 48 h. Furthermore, the intra-venous delivery of this oligonucleotide significantly reduced the viral titers in the lungs of infected mice and protected the mice from lethal effects of all the strains of influenza virus. The study demonstrated that the antisense oligonucleotide designed against the NCR region inhibits the expression of the viral genome. The decrease of the cytopathic effect in the MDCK cells and increase in survival of mice confirmed the reduction of virus multiplication and pathogenesis in the presence of antisense oligonucleotide. Thus, we demonstrate that a single antisense oligonucleotide is capable of providing protection against more than one strains of the IAV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Dz:

DNAzymes

Rz:

Ribozyme

AS:

Antisense

References

  1. Bae, S., Cheong, H., Lee, J., Cheong, C., Kainosho, M., & Choi, B. S. (2001). Structural features of an influenza virus promoter and their implications for viral RNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 98, 10602–10607.

    Article  CAS  Google Scholar 

  2. Beaton, A. R., & Krug, R. M. (1986). Transcription anti-termination during influenza viral template RNA synthesis requires the nucleocapsid protein and the absence of a 5′ capped end. Proceedings of the National Academy of Sciences of the United States of America, 83, 6282–6286.

    Article  CAS  Google Scholar 

  3. Bitko, V., & Barik, S. (2001). Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiology, 1, 34–44.

    Article  CAS  Google Scholar 

  4. Ge, Q., Filip, L., Bai, A., Nguyen, T., Eisen, H. N., & Chen, J. (2004). Inhibition of influenza virus production in virus-infected mice by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 101, 8676–8681.

    Article  CAS  Google Scholar 

  5. Haasnoot, P. C., Cupac, D., & Berkhout, B. (2003). Inhibition of virus replication by RNA interference. Journal of Biomedical Science, 10, 607–617.

    Article  Google Scholar 

  6. Hoffmann, E., Stech, J., Guan, Y., Webster, R. G., & Perez, D. R. (2001). Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology, 146, 2275–2289.

    Article  CAS  Google Scholar 

  7. Kashima, Y., Ikeda, M., Itoh, Y., Sakoda, Y., Nagata, T., Miyake, T., et al. (2009). Intranasal administration of a live non-pathogenic avian H5N1 influenza virus from a virus library confers protective immunity against H5N1 highly pathogenic avian influenza virus infection in mice: Comparison of formulations and administration routes of vaccines. Vaccine, 27, 7402–7408.

    Article  CAS  Google Scholar 

  8. Khanna, M., Kumar, P., Choudhary, K., Kumar, B., & Vijayan, V. K. (2008). Emerging influenza virus: A global threat. Journal of Biosciences, 33, 475–482.

    Article  CAS  Google Scholar 

  9. Kong, X., Zhang, W., Lockey, R. F., Auais, A., Piedimonte, G., & Mohapatra, S. S. (2007). Respiratory syncytial virus infection in Fischer 344 rats is attenuated by short interfering RNA against the RSV-NS1 gene. Genetic Vaccines and Therapy, 5, 4–11.

    Article  Google Scholar 

  10. Kumar, B., Khanna, M., Kumar, P., Sood, V., Vyas, R., & Banerjea, A. C. (2012). Nucleic acid mediated cleavage of M1 gene of influenza A virus is significantly augmented by antisense molecules targeted to hybridize close to the cleavage site. Molecular Biotechnology, 51(1), 27–36.

    Article  CAS  Google Scholar 

  11. Kumar, B., Kumar, P., Rajput, R., Daga, M. K., Singh, V., & Khanna, M. (2012). Comparative reproducibility of SYBR Green I and TaqMan real-time PCR chemistries for the analysis of matrix and hemagglutinin genes of Influenza A viruses. International Journal of Collaborative Research on Internal Medicine & Public Health, 4(7), 1346–1352.

    Google Scholar 

  12. Kumar, P., Khanna, M., Kumar, B., Rajput, R., & Banerjea, A. C. (2012). A conserved matrix epitope based DNA vaccine protects mice against influenza A virus challenge. Antiviral Research, 93, 78–85.

    Article  CAS  Google Scholar 

  13. Kumar, P., Sood, V., Vyas, R., Gupta, N., Banerjea, A. C., & Khanna, M. (2010). Potent inhibition of influenza virus replication with novel siRNA-chimeric-ribozyme constructs. Antiviral Research, 87(2), 204–212.

    Article  CAS  Google Scholar 

  14. Lamb, R. A., & Krug, R. M. (2001). In D. M. Knipe & P. M. Howley (Eds.), Fundamental Virology (pp. 725–770). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  15. Luscher, M. M. (2000). Influenza chemotherapy: a review of the present state of art and of new drugs in development. Archives of Virology, 145, 2233–2248.

    Article  Google Scholar 

  16. Nakajima, K. (1997). Influenza virus genome structure and encoded proteins. Nippon Rinsho, 55, 2542–2546.

    CAS  Google Scholar 

  17. Novina, C. D., Murray, M. F., Dykxhoorn, D. M., Beresford, P. J., Riess, J., Lee, S. K., et al. (2002). siRNA-directed inhibition of HIV-1 infection. Nature Medicine, 8, 681–686.

    CAS  Google Scholar 

  18. Ponchel, F., Toomes, C., Bransfield, K., Leong, F. T., Douglas, S. H., Field, S. L., et al. (2003). Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnology, 3, 18–30.

    Article  Google Scholar 

  19. Rajput, R., Khanna, M., Kumar, P., Kumar, B., Sharma, S., Gupta, N., et al. (2012). siRNA targeting the nonstructural gene transcript inhibits influenza A virus replication in experimental mice. Nucleic Acid Therapeutics, 22(6), 414–422.

    CAS  Google Scholar 

  20. Routledge, E. G., Willcocks, M. M., Morgan, L., Samson, A. C. R., Scott, R., & Toms, G. L. (1987). Heterogeneity of the respiratory syncytial virus 22K protein revealed by western blotting with monoclonal antibodies. Journal of General Virology, 86, 1209–1215.

    Article  Google Scholar 

  21. Sohail, M., Doran, G., Riedemann, J., Macaulay, V., & Southern, E. M. (2003). A simple and cost-effective method for producing small interfering RNAs with high efficacy. Nucleic Acids Research, 31, 38–42.

    Article  Google Scholar 

  22. Tobita, K., Sugiura, A., Enomoto, C., & Furuyama, M. (1975). Plaque assay and primary isolation of influenza a viruses in an established line of canine kidney cells (MDCK) in the presence of trypsin. Medical Microbiology and Immunology, 162, 9–14.

    Article  CAS  Google Scholar 

  23. Webby, R. J., & Webster, R. G. (2001). Emergence of influenza A viruses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356, 1817–1828.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the help rendered by our laboratory staff for successful completion of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Khanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Kumar, B., Rajput, R. et al. Cross-Protective Effect of Antisense Oligonucleotide Developed Against the Common 3′ NCR of Influenza A Virus Genome. Mol Biotechnol 55, 203–211 (2013). https://doi.org/10.1007/s12033-013-9670-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9670-8

Keywords

Navigation