Skip to main content
Log in

Characterization of Zwitterionic Phosphatidylcholine-Based Bilayer Vesicles as Efficient Self-Assembled Virus-Like Gene Carriers

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Entrapment of plasmid DNA (pDNA) in an aqueous compartment separated from the bulk external aqueous medium by a phospholipid bilayer resembles a structure similar to a primitive living cell, and interestingly, this phenomenon occurs completely self-assembled. Being inspired by such a structure as well as using the dehydration–rehydration technique, we were able to encapsulate pDNA without using multivalent cations and with high efficiency (98 %) into noncationic lipid bilayer vesicles. These liposomes which were composed of dimyristoyl-sn-glycero-3-phosphocholine unlike cationic liposomes, were nontoxic. The obtained liposome structure was able protect DNA against nuclease and was completely stable, in a way that even after 6 months, it still kept the pDNA in its structure, and there was a small change in its size (100–150 nm) determined by dynamic light scattering. The purpose of this research is to polarize the researchers’ interest toward utilization of neutral liposomes originating from the cell membrane as the most efficient carrier for gene delivery. We indicated that in using such carriers, which are the most similar synthetic structures to viruses, their inability in electrostatic interaction with DNA would not be an obstacle for entrapping nucleic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pisani, M., Mobbili, G., & Bruni, P. (2011). Neutral liposomes and DNA transfection. In X. Yuan (Ed.), Non-viral gene therapy (pp. 319–348). Shanghai: InTech.

    Google Scholar 

  2. Elsabahy, M., Nazarali, A., & Foldvari, M. (2011). Non-viral nucleic acid delivery: Key challenges and future directions. Current Drug Delivery, 8, 235–244.

    Article  CAS  Google Scholar 

  3. Mintzer, M. A., & Simanek, E. E. (2009). Nonviral vectors for gene delivery. Chemical Reviews, 109, 259–302.

    Article  CAS  Google Scholar 

  4. MacLachlan, I., Cullis, P. R., & Graham, R. W. (2000). Synthetic virus systems for systemic gene therapy. In N. Smythe-Templeton & D. Lasic (Eds.), Gene therapy: Therapeutic mechanisms and strategies (pp. 267–290). New York: Marcel Dekker.

    Google Scholar 

  5. Tresset, G., Cheong, W. C., Tan, Y. L., Boulaire, J., & Lam, Y. M. (2007). Phospholipid-based artificial viruses assembled by multivalent cations. Biophysical Journal, 93, 637–644.

    Article  CAS  Google Scholar 

  6. Ulrich, A. S. (2002). Biophysical aspects of using liposomes as delivery vehicles. Bioscience Reports, 22, 129–150.

    Article  CAS  Google Scholar 

  7. Wilschut, J., & Hoekstra, D. (1984). Membrane fusion: From liposomes to biological membranes. Trends in Biochemical Sciences, 9, 479–483.

    Article  CAS  Google Scholar 

  8. Deamer, D. (2005). A giant step towards artificial life? Trends in Biotechnology, 23, 336–338.

    Article  CAS  Google Scholar 

  9. Dzieciol, A. J., & Mann, S. (2012). Designs for life: Protocell models in the laboratory. Chemical Society Reviews, 41, 79–85.

    Article  CAS  Google Scholar 

  10. Walde, P. (2010). Building artificial cells and protocell models: Experimental approaches with lipid vesicles. BioEssays, 32, 296–303.

    Article  CAS  Google Scholar 

  11. Mayer, L. D., Bally, M. B., Hope, M. J., & Cullis, P. R. (1986). Techniques for encapsulating bioactive agents into liposomes. Chemistry and Physics of Lipids, 40, 333–345.

    Article  CAS  Google Scholar 

  12. Monnard, P. A., Luptak, A., & Deamer, D. W. (2007). Models of primitive cellular life: Polymerases and templates in liposomes. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 362, 1741–1750.

    Article  CAS  Google Scholar 

  13. Mugabe, C., Azghani, A., & Omri, A. (2006). Preparation and characterization of dehydration–rehydration vesicles loaded with aminoglycoside and macrolide antibiotics. International Journal of Pharmaceutics, 307, 244–250.

    Article  CAS  Google Scholar 

  14. Knoll, G., Burger, K. N., Bron, R., van Meer, G., & Verkleij, A. J. (1988). Fusion of liposomes with the plasma membrane of epithelial cells: Fate of incorporated lipids as followed by freeze fracture and autoradiography of plastic sections. Journal of Cell Biology, 107, 2511–2521.

    Article  CAS  Google Scholar 

  15. Sternberg, B., Gumpert, J., Meyer, H. W., & Reinhardt, G. (1986). Structures of liposome membranes as models for similar features of cytoplasmic membranes of bacteria. Acta Histochemica Supplement, 33, 139–145.

    CAS  Google Scholar 

  16. Valenzuela, S. M. (2007). Liposome techniques for synthesis of biomimetic lipid membranes. In D. Martin (Ed.), Nanobiotechnology of biomimetic membranes (pp. 75–87). New York: Springer.

    Chapter  Google Scholar 

  17. Wiethoff, C. M., Gill, M. L., Koe, G. S., Koe, J. G., & Russell, M. C. (2002). The structural organization of cationic lipid–DNA complexes. Journal of Biological Chemistry, 277, 44980–44987.

    Article  CAS  Google Scholar 

  18. Fraley, R., Subramani, S., Berg, P., & Papahadjopoulos, D. (1980). Introduction of liposome-encapsulated SV40 DNA into cells. Journal of Biological Chemistry, 255, 10431–10435.

    CAS  Google Scholar 

  19. Kudsiova, L., Arafiena, C., & Lawrence, M. J. (2008). Characterisation of chitosan-coated vesicles encapsulating DNA suitable for gene delivery. Journal of Pharmaceutical Sciences, 97, 3981–3997.

    Article  CAS  Google Scholar 

  20. Gregoriadis, G., Saffie, R., & Hart, S. L. (1996). High yield incorporation of plasmid DNA within liposomes: Effect on DNA integrity and transfection efficiency. Journal of Drug Targeting, 3, 469–475.

    Article  CAS  Google Scholar 

  21. Gregoriadis, G., Bacon, A., Caparros-Wanderley, W., & McCormack, B. (2003). Plasmid DNA vaccines: Entrapment into liposomes by dehydration–rehydration. Methods in Enzymology, 367, 70–80.

    Article  CAS  Google Scholar 

  22. Maurer, S. E., & Monnard, P. A. (2011). Primitive membrane formation, characteristics and roles in the emergent properties of a protocell. Entropy, 13, 466–484.

    Article  CAS  Google Scholar 

  23. Monnard, P. A., & Deamer, D. W. (2001). Nutrient uptake by protocells: A liposome model system. Origins of Life and Evolution of the Biosphere, 31, 145–155.

    Google Scholar 

  24. Bruni, P., Francescangeli, O., Marini, M., Mobbili, G., Pisani, M., & Smorlesi, A. (2011). Can neutral liposomes be considered as genetic material carriers for human gene therapy? Mini-Reviews in Organic Chemistry, 8, 38–48.

    Article  CAS  Google Scholar 

  25. Mozafari, M. R., & Omri, A. (2007). Importance of divalent cations in nanolipoplex gene delivery. Journal of Pharmaceutical Sciences, 96, 1955–1966.

    Article  CAS  Google Scholar 

  26. Pisani, M., Bruni, P., Caracciolo, G., Caminiti, R., & Francescangeli, O. (2006). Structure and phase behavior of self-assembled DPPC–DNA–metal cation complexes. Journal of Physical Chemistry B, 110, 13203–13211.

    Article  CAS  Google Scholar 

  27. Suleymanoglu, E. (2006). Phospholipid–nucleic acid recognition: Energetics of DNA–Mg2+–phosphatidylcholine ternary complex formation and its further compaction as a gene delivery formulation. PDA Journal of Pharmaceutical Science and Technology, 60, 218–231.

    CAS  Google Scholar 

  28. Bruni, P., Pisani, M., Amici, A., Marchini, C., Montani, M., & Francescangeli, O. (2006). Self-assembled ternary complexes of neutral liposomes, deoxyribonucleic acid, and bivalent metal cations. Promising vectors for gene transfer? Applied Physics Letters, 88, 073901–073903.

    Article  Google Scholar 

  29. Kuvichkin, V. V. (2009). Investigation of ternary complexes: DNA–phosphatidylcholine liposomes–Mg2+ by freeze-fracture method and their role in the formation of some cell structures. Journal of Membrane Biology, 231, 29–34.

    Article  CAS  Google Scholar 

  30. Manosroi, A., Thathang, K., Werner, R. G., Schubert, R., & Manosroi, J. (2008). Stability of luciferase plasmid entrapped in cationic bilayer vesicles. International Journal of Pharmaceutics, 356, 291–299.

    Article  CAS  Google Scholar 

  31. Perrie, Y., & Gregoriadis, G. (2000). Liposome-entrapped plasmid DNA: Characterisation studies. Biochimica et Biophysica Acta, 1475, 125–132.

    Article  CAS  Google Scholar 

  32. Kurihara, K., Tamura, M., Shohda, K., Toyota, T., Suzuki, K., & Sugawara, T. (2011). Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nature Chemistry, 3, 775–781.

    Article  CAS  Google Scholar 

  33. Pupo, E., Padrón, A., Santana, E., Sotolongo, J., Quintana, D., Dueñas, S., et al. (2005). Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization–extrusion technique. Journal of Controlled Release, 104, 379–396.

    Article  CAS  Google Scholar 

  34. Gundermann, K., & Scheele, E. (2003). Polyunsaturated phosphatidylcholine in chronic liver disease? Past and present. In B. F. Szuhaj & W. van Nieuwenhuyzen (Eds.), Nutrition and biochemistry of phospholipids (pp. 152–162). Urbana, IL: AOCS Publishing.

    Google Scholar 

  35. Tandy, S., Chung, R. W. S., Kamili, A., Wat, E., Weir, J. M., Meikle, P. J., et al. (2010). Hydrogenated phosphatidylcholine supplementation reduces hepatic lipid levels in mice fed a high-fat diet. Atherosclerosis, 213, 142–147.

    Article  CAS  Google Scholar 

  36. Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A., & Simons, K. (2003). Resistance of cell membranes to different detergents. Proceedings of the National Academy of Sciences of the United States of America, 100, 5795–7800.

    Article  CAS  Google Scholar 

  37. Sot, J., Collado, M. I., Arrondo, J. L. R., Alonso, A., & Goñi, F. M. (2002). Triton X-100-resistant bilayers: Effect of lipid composition and relevance to the raft phenomenon. Langmuir, 18, 2828–2835.

    Article  CAS  Google Scholar 

  38. Koynova, R., & Tenchov, B. (2001). Interactions of surfactants and fatty acids with lipids. Current Opinion in Colloid & Interface Science, 6, 277–286.

    Article  CAS  Google Scholar 

  39. London, E., & Brown, D. A. (2000). Insolubility of lipids in triton X-100: Physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochimica et Biophysica Acta, 1508, 182–195.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratefulness to the Research Council of Tarbiat Modares University for providing financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Sadeghizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramezani, R., Sadeghizadeh, M., Behmanesh, M. et al. Characterization of Zwitterionic Phosphatidylcholine-Based Bilayer Vesicles as Efficient Self-Assembled Virus-Like Gene Carriers. Mol Biotechnol 55, 120–130 (2013). https://doi.org/10.1007/s12033-013-9663-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9663-7

Keywords

Navigation