Skip to main content

Advertisement

Log in

Affinity Maturation of Cry1Aa Toxin to the Bombyx mori Cadherin-Like Receptor by Directed Evolution

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Improvement of the activity and insecticidal spectrum of cloned Cry toxins of Bacillus thuringiensis should allow for their wider application as biopesticides and a gene source for gene-modified crops. The insecticidal activity of Cry toxins depends on their binding to the receptor. Therefore, as a model, we aimed to generate improved binding affinity mutant toxins against Bombyx mori cadherin-like receptor (BtR175) using methods of directed evolution with the expectation of insecticidal activity improved mutants. Four serial amino acid residues of 439QAAG442 or 443AVYT446 of Cry1Aa were replaced with random amino acids and were displayed on the T7 phage for library construction. Through five cycles of panning of the phage libraries using BtR175, 11 mutant phage clones were concentrated, and mutant toxin sequences were confirmed. The binding affinities of the three mutants were 42-, 15-, and 13-fold higher than that of the wild type, indicating that mutants with improved binding affinity to cadherin can be easily selected from randomly replaced loop 3 mutant libraries using directed evolution. We discuss the development of a genetic engineering method based on directed evolution to improve the binding affinity of Cry toxin to receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BtR:

Cadherin-like receptor

BtR175-TBR:

Toxin-binding region of BtR175

APN:

Aminopeptidase N

ALP:

Alkaline phosphatase

ABCC2:

ABC transporter C2

References

  1. Crickmore, N. (2006). Beyond the spore—past and future developments of Bacillus thuringiensis as a biopesticide. Journal of Applied Microbiology, 101, 616–619.

    Article  CAS  Google Scholar 

  2. Romeis, J., Meissle, M., & Bigler, F. (2006). Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nature Biotechnology, 24, 63–71.

    Article  CAS  Google Scholar 

  3. Bravo, A., Likitvivatanavong, S., Gill, S. S., & Soberon, M. (2011). Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 41, 423–431.

    Article  CAS  Google Scholar 

  4. Zhang, X., Candas, M., Griko, N. B., Taussig, R., & Bulla, L. A. (2006). A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proceedings of the National Academy of Sciences of the United States of America, 103, 9897–9902.

    Article  CAS  Google Scholar 

  5. Gahan, L. J., Gould, F., & Heckel, D. G. (2001). Identification of a gene associated with Bt resistance in Heliothis virescens. Science, 293, 857–860.

    Article  CAS  Google Scholar 

  6. Morin, S., Biggs, R. W., Sisterson, M. S., Shriver, L., Ellers-Kirk, C., Higginson, D., et al. (2003). Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proceedings of the National Academy of Sciences of the United States of America, 100, 5004–5009.

    Article  CAS  Google Scholar 

  7. Xu, X., Yu, L., & Wu, Y. (2005). Disruption of a cadherin gene associated with resistance to Cry1Ac delta -endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Applied and Environmental Microbiology, 71, 948–954.

    Article  CAS  Google Scholar 

  8. Yang, Y., Chen, H., Wu, Y., Yang, Y., & Wu, S. (2007). Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac. Applied and Environmental Microbiology, 73, 6939–6944.

    Article  CAS  Google Scholar 

  9. Nagamatu, Y., Koike, T., Sasaki, K., Yoshimoto, A., & Furukawa, Y. (1999). The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal Cry1Aa toxin. FEBS Letters, 460, 385–390.

    Article  Google Scholar 

  10. Tsuda, Y., Nakatani, F., Hashimoto, K., Ikawa, S., Matsuura, C., Fukada, T., et al. (2003). Cytotoxic activity of Bacillus thuringiensis Cry proteins on mammalian cells transfected with cadherin-like Cry receptor gene of Bombyx mori (silkworm). The Biochemical Journal, 369, 697–703.

    Article  CAS  Google Scholar 

  11. Hua, G., Jurat-Fuentes, J. L., & Adang, M. J. (2004). Fluorescent-based assays establish Manduca sexta Bt-R(1a) cadherin as a receptor for multiple Bacillus thuringiensis Cry1A toxins in Drosophila S2 cells. Insect Biochemistry and Molecular Biology, 34, 193–202.

    Article  CAS  Google Scholar 

  12. Zhang, X., Candas, M., Griko, N. B., Rose-Young, L., & Bulla, L. A. (2005). Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death and Differentiation, 12, 1407–1416.

    Article  CAS  Google Scholar 

  13. Soberon, M., Pardo-Lopez, L., Lopez, I., Gomez, I., Tabashnik, B. E., & Bravo, A. (2007). Engineering modified Bt toxins to counter insect resistance. Science, 318, 1640–1642.

    Article  CAS  Google Scholar 

  14. Tabashnik, B. E., Huang, F., Ghimire, M. N., Leonard, B. R., Siegfried, B. D., Rangasamy, M., et al. (2011). Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance. Nature Biotechnology, 29, 1128–1131.

    Article  CAS  Google Scholar 

  15. Gahan, L. J., Pauchet, Y., Vogel, H., & Heckel, D. G. (2010). An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genetics, 6, e1001248.

    Article  CAS  Google Scholar 

  16. Baxter, S. W., Badenes-perez, F. R., Morrison, A., Vogel, H., Crickmore, N., Kain, W., et al. (2011). Parallel evolution of Bt toxin resistance in Lepidoptera. Genetics, 189, 675–679.

    Article  CAS  Google Scholar 

  17. Atsumi, S., Miyamoto, K., Yamamoto, K., Narukawa, J., Kawai, S., Sezutsu, H., et al. (2012). Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proceedings of the National Academy of Sciences of the United States of America, 109, E1591–E1598.

    Article  CAS  Google Scholar 

  18. Li, J. D., Carroll, J., & Ellar, D. J. (1991). Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature, 353, 815–821.

    Article  CAS  Google Scholar 

  19. Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J. L., Brousseau, R., et al. (1995). Bacillus thuringiensis Cry1A(a) insecticidal toxin: crystal structure and channel formation. Journal of Molecular Biology, 254, 447–464.

    Article  CAS  Google Scholar 

  20. Galitsky, N., Cody, V., Wojtczak, A., Ghosh, D., Luft, J. R., Pangborn, W., et al. (2001). Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallographica Section D, Biological Crystallography, 57, 1101–1109.

    Article  CAS  Google Scholar 

  21. Morse, R. J., Yamamoto, T., & Stroud, R. M. (2001). Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure, 9, 409–417.

    Article  CAS  Google Scholar 

  22. Boonserm, P., Davis, P., Ellar, D. J., & Li, J. (2005). Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. Journal of Molecular Biology, 348, 363–382.

    Article  CAS  Google Scholar 

  23. Boonserm, P., Mo, M., Angsuthanasombat, C., & Lescar, J. (2006). Structure of the functional from of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstorm resolution. Journal of Bacteriology, 188, 3391–3401.

    Article  CAS  Google Scholar 

  24. Guo, S., Ye, S., Liu, Y., Wei, L., Xue, J., Wu, H., et al. (2009). Crystal structure of Bacillus thuringiensis Cry8Ea1: an insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. Journal of Structural Biology, 168, 259–266.

    Article  CAS  Google Scholar 

  25. Gomez, I., Dean, D. H., Bravo, A., & Soberon, M. (2003). Molecular basis for Bacillus thuringiensis Cry1Ab toxin specificity: two structural determinants in the Manduca sexta Bt-R1 receptor interact with loops alpha-8 and 2 in domain II of Cry1Aa toxin. Biochemistry, 42, 10482–10489.

    Article  CAS  Google Scholar 

  26. Wu, S. J., & Dean, D. H. (1996). Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryIIIA delta-endotoxin. Journal of Molecular Biology, 255, 628–640.

    Article  CAS  Google Scholar 

  27. Gomez, I., Oltean, D. I., Gill, S. S., Bravo, A., & Soberon, M. (2001). Mapping the epitope in cadherin-like receptor involved in Bacillus thuringiensis Cry1A toxin interaction using phage display. The Journal of Biological Chemistry, 276, 28906–28912.

    Article  CAS  Google Scholar 

  28. Xie, R., Zhuang, M., Ross, L. S., Gomez, I., Oltean, D. I., Bravo, A., et al. (2005). Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins. The Journal of Biological Chemistry, 280, 8416–8425.

    Article  CAS  Google Scholar 

  29. Sharma, P., Nain, V., Lakhanpaul, S., & Kumar, P. A. (2011). Binding of Bacillus thuringiensis Cry1A toxins with brush border membrane vesicles of maize stem borer (Chilo partellus Swinhoe). Journal of Invertebrate Pathology, 106, 333–335.

    Article  CAS  Google Scholar 

  30. Dorsch, J. A., Candas, M., Griko, N. B., Maaty, W. S., Midboe, E. G., Vadlamudi, R. K., et al. (2002). Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 32, 1025–1036.

    Article  CAS  Google Scholar 

  31. Marks, J. D., Marks, J. D., Griffiths, A. D., Malmqvist, M., Clackson, T. P., Bye, J. M., et al. (1992). By-passing immunization: building high affinity human antibodies by chain shuffling. Bio/Technology, 10, 779–783.

    Article  CAS  Google Scholar 

  32. Barbas, C. F, 3rd, Hu, D., Dunlop, N., Sawyer, L., Cababa, D., Hendry, R. M., et al. (1994). In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity. Proceedings of the National Academy of Sciences of the United States of America, 91, 3809–3813.

    Article  CAS  Google Scholar 

  33. Marzari, R., Edomi, P., Bhatnagar, R. K., Ahmad, S., Selvapandiyan, A., & Bradbury, A. (1997). Phage display of Bacillus thuringiensis CryIA(a) insecticidal toxin. FEBS Letters, 411, 27–31.

    Article  CAS  Google Scholar 

  34. Kasman, L. M., Lukowiak, A. A., Garczynski, S. F., Mcnall, R. J., Youngman, P., & Adang, M. J. (1998). Phage display of a biologically active Bacillus thuringiensis toxin phage display of a biologically active Bacillus thuringiensis Toxin. Applied and Environmental Microbiology, 64, 2995–3003.

    CAS  Google Scholar 

  35. Vilchez, S., Jacoby, J., & Ellar, D. J. (2004). Display of biologically functional insecticidal toxin on the surface of lambda phage. Applied and Environmental Microbiology, 70, 6587–6594.

    Article  CAS  Google Scholar 

  36. Pacheco, S., Gomez, I., Sato, R., Bravo, A., & Soberon, M. (2006). Functional display of Bacillus thuringiensis Cry1Ac toxin on T7 phage. Journal of Invertebrate Pathology, 92, 45–49.

    Article  CAS  Google Scholar 

  37. Craveiro, K. I., Gomes Junior, J. E., Silva, M. C., Macedo, L. L., Lucena, W. A., Silva, M. S., et al. (2010). Variant Cry1Ia toxins generated by DNA shuffling are active against sugarcane giant borer. Journal of Biotechnology, 145, 215–221.

    Article  CAS  Google Scholar 

  38. Oliveira, G. R., Silva, M. C., Lucena, W. A., Nakasu, E. Y., Firmino, A. A., Beneventi, M. A., et al. (2011). Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis). BMC Biotechnology, 11, 85.

    Article  CAS  Google Scholar 

  39. Ishikawa, H., Hoshino, Y., Motoki, Y., Kawahara, T., Kitajima, M., Kitami, M., et al. (2007). A system for the directed evolution of the insecticidal protein from Bacillus thuringiensis. Molecular Biotechnology, 36, 90–101.

    Article  CAS  Google Scholar 

  40. Obata, F., Kitami, M., Inoue, Y., Atsumi, S., Yoshizawa, Y., & Sato, R. (2009). Analysis of the region for receptor binding and triggering of oligomerization on Bacillus thuringiensis Cry1Aa toxin. FEBS Journal, 276, 5949–5959.

    Article  CAS  Google Scholar 

  41. Hara, H., Atsumi, S., Yaoi, K., Nakanishi, K., Higurashi, S., Miura, N., et al. (2003). A cadherin-like protein functions as a receptor for Bacillus thuringiensis Cry1Aa and Cry1Ac toxins on midgut epithelial cells of Bombyx mori larvae. FEBS Letters, 538, 29–34.

    Article  CAS  Google Scholar 

  42. Hawkins, R. E., Russell, S. J., & Winter, G. (1992). Selection of phage antibodies by binding affinity. Mimicking affinity maturation. Journal of Molecular Biology, 226, 889–896.

    Article  CAS  Google Scholar 

  43. Schier, R., Bye, J., Apell, G., McCall, A., Adams, G. P., Malmqvist, M., et al. (1996). Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection. Journal of Molecular Biology, 255, 28–43.

    Article  CAS  Google Scholar 

  44. Schier, R., McCall, A., Adams, G. P., Marshall, K. W., Merritt, H., Yim, M., et al. (1996). Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. Journal of Molecular Biology, 263, 551–567.

    Article  CAS  Google Scholar 

  45. Thompson, J., Pope, T., Tung, J. S., Chan, C., Hollis, G., Mark, G., et al. (1996). Affinity maturation of a high-affinity human monoclonal antibody against the third hypervariable loop of human immunodeficiency virus: use of phage display to improve affinity and broaden strain reactivity. Journal of Molecular Biology, 256, 77–88.

    Article  CAS  Google Scholar 

  46. Gomez, I., Arenas, I., Benitez, I., Miranda-Rios, J., Becerril, B., Grande, R., et al. (2006). Specific epitopes of domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. The Journal of Biological Chemistry, 281, 34032–34039.

    Article  CAS  Google Scholar 

  47. Yaoi, K., Kadotani, T., Kuwana, H., Shinkawa, A., Takahashi, T., Iwahana, H., et al. (1997). Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis Cry1Aa toxin. European Journal of Biochemistry, 246, 652–657.

    Article  CAS  Google Scholar 

  48. Yaoi, K., Nakanishi, K., Kadotani, T., Imamura, M., Koizumi, N., Iwahara, H., et al. (1999). Bacillus thuringiensis Cry1Aa toxin-binding region of Bombyx mori aminopeputidase N. FEBS Letters, 463, 221–224.

    Article  CAS  Google Scholar 

  49. Jurat-Fuentes, J. L., & Adang, M. J. (2004). Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. European Journal of Biochemistry, 271, 3127–3135.

    Article  CAS  Google Scholar 

  50. Hossain, D. M., Shitomi, Y., Moriyama, K., Higuchi, M., Hayakawa, T., Mitsui, T., et al. (2004). Characterization of a novel plasma membrane protein, expressed in the midgut epithelia of Bombyx mori, that binds to Cry1A toxins. Applied and Environmental Microbiology, 70, 4604–4612.

    Article  CAS  Google Scholar 

  51. Pacheco, S., Gomez, I., Arenas, I., Saab-Rincon, G., Rodriguez-Almazan, C., Gill, S. S., et al. (2009). Domain II loop3 of Bacillus thuringiensis Cry1Ab toxin is involved in a “ping pong” binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. The Journal of Biological Chemistry, 284, 32750–32757.

    Article  CAS  Google Scholar 

  52. Atsumi, S., Mizuno, E., Hara, H., Nakanishi, K., Kitami, M., Miura, N., et al. (2005). Location of the Bombyx mori Aminopeptidase N Type 1 Binding Site on Bacillus thuringiensis Cry1Aa Toxin. Applied and Environmental Microbiology, 71, 3966–3977.

    Article  CAS  Google Scholar 

  53. Burton, S. L., Ellar, D. J., Li, J., & Derbyshire, D. J. (1999). N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. Journal of Molecular Biology, 287, 1011–1022.

    Article  CAS  Google Scholar 

  54. de Maagd, R. A., Bakker, P. L., Masson, L., Adang, M. J., Sangadala, S., Stiekema, W., et al. (1999). Domain III of the Bacillus thuringiensis delta-endotoxin Cry1Ac is involved in binding to Manduca sexta brush border membranes and to its purified aminopeptidase N. Molecular Microbiology, 31, 463–471.

    Article  Google Scholar 

  55. Jenkins, J. L., Lee, M. K., Sangadala, S., Adang, M. J., & Dean, D. H. (1999). Binding of Bacillus thuringiensis Cry1Ac toxin to Manduca sexta aminopeptidase-N receptor is not directly related to toxicity. FEBS Letters, 462, 373–376.

    Article  CAS  Google Scholar 

  56. Kitami, M., Kadotani, T., Nakanishi, K., Atsumi, S., Higurashi, S., Ishizaka, T., et al. (2011). Bacillus thuringiensis Cry Toxins Bound Specifically to Various Proteins via Domain III, Which Had a Galactose-Binding Domain-Like Fold. Bioscience, Biotechnology, and Biochemistry, 75, 305–312.

    Article  CAS  Google Scholar 

  57. Wolfersberger, M. G. (1990). The toxicity of two Bacillus thuringiensis delta-endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush border membranes for the toxins. Experientia, 46, 475–477.

    Article  CAS  Google Scholar 

  58. Liang, Y., Patel, S. S., & Dean, D. H. (1995). Irreversible binding kinetics of Bacillus thuringiensis CryIA delta-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity. The Journal of Biological Chemistry, 270, 24719–24724.

    Article  CAS  Google Scholar 

  59. Tanaka, S., Miyamoto, K., Noda, H., Jurat-Fuentes, J. L., Yoshizawa, Y., Endo, H., & Sato, R. ABC transporter C2 functions both independently and cooperatively with cadherin-like protein as a receptor for Cry toxins (submitted).

Download references

Acknowledgments

This research was supported financially by a Grant-in-Aid for Scientific Research (B) (24310054) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoichi Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, Y., Tanaka, S., Otsuki, M. et al. Affinity Maturation of Cry1Aa Toxin to the Bombyx mori Cadherin-Like Receptor by Directed Evolution. Mol Biotechnol 54, 888–899 (2013). https://doi.org/10.1007/s12033-012-9638-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9638-0

Keywords

Navigation