Skip to main content
Log in

Cloning, Characterization, and Expression of a New cry1Ab Gene from DOR Bt-1, an Indigenous Isolate of Bacillus thuringiensis

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A new cry1Ab gene was cloned from the promising local isolate, DOR Bt-1, a Bacillus thuringiensis strain isolated from castor semilooper (Achaea janata L.) cadavers from castor bean (Ricinus communis L.) field. The nucleotide sequence of the cloned cry1Ab gene indicated that the open reading frame consisted of 3,465 bases encoding a protein of 1,155 amino acid residues with an estimated molecular weight of 130 kDa. Homology comparisons revealed that the deduced amino acid sequence of cry1Ab had a variation of seven amino acid residues compared to those of the known Cry1Ab proteins in the NCBI database and this gene has been designated as cry1Ab26 by the B. thuringiensis δ-endotoxin Nomenclature Committee. cry1Ab26 was cloned into pET 29a(+) vector and expressed in E. coli strain BL21 (DE3) under the control of T7 promoter with IPTG induction. ELISA, SDS-PAGE, and Western blot analysis confirmed the expression of 130-kDa protein. Insect bioassays with neonate larvae of Helicoverpa armigera showed that the partially purified Cry1Ab26 caused 97 % mortality within 5 days of feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bravo, A., Gill, S. S., & Soberon, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49, 423–435.

    Article  CAS  Google Scholar 

  2. Crickmore, N. (2011). http://www.biols.susx.ac.uk/Home/Neil_Crickmore/Bt/index.html

  3. Bravo, A., Likitvivatanauong, S., Gill, S. S., & Soberon, M. (2011). Bacillus thuringiensis: A story of successful bioinsecticide. Insect Biochemistry and Molecular Biology, 41(7), 423–431.

    Article  CAS  Google Scholar 

  4. Tiewsiri, K., & Wang, P. (2011). Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1ac in cabbage looper. PNAS, 108(34), 14037–14042.

    Article  CAS  Google Scholar 

  5. Heckel, D. G., Gahan, L. J., Baxter, S. W., Zhao, J. Z., Shelton, A. M., Gould, F., et al. (2007). The diversity of Bt resistance gene in species of Lepidoptera. Journal of Invertebrate Pathology, 95, 192–197.

    Article  CAS  Google Scholar 

  6. Gomez, I., Arenas, I., Benitez, I., Miranda-Rios, J., Becerril, B., Grande, R., et al. (2006). Specific epitopes of domains II and III of Bacillus thuringensis cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. The Journal of Biological Chemistry, 281(45), 34032–34039.

    Article  CAS  Google Scholar 

  7. Ferre, J., & Van Rie, J. (2002). Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology, 47, 501–533.

    Article  CAS  Google Scholar 

  8. Morin, S., Biggs, R. W., Sisterson, M. S., Shriver, L., Ellers-Kirk, C., Higginson, D., et al. (2003). Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proceedings of the National Academy of Sciences USA, 100, 5004–5009.

    Google Scholar 

  9. Xu, X., Yu, L., & Wu, Y. (2005). Disruption of a cadharin gene associated with resistance to cry1Ab δ-endotoxin of Bacillus thuringensis in Helicoverpa armigera. Applied and Environmental Microbiology, 71, 948–954.

    Article  CAS  Google Scholar 

  10. Soberon, M., Pardo-Lopez, L., Lopez, I., Gomez, I., Tabashnik, B. E., & Bravo, A. (2007). Engineering modified Bt toxins to counter insect resistance. Science, 318, 1640–1642.

    Article  CAS  Google Scholar 

  11. Pardo-Lopez, L., Tabashnik, B. E., Soberon-Chavez, M., & Bravo-De, L. M. (2010). Suppression of resistance in insects to Bacillus thurigensis cry toxins, using toxins that do not require the Cadherin Receptor. Patent application publication US 0186123A1.

  12. Saraswathy, N., & Kumar, P. A. (2004). Protein engineering of δ-endotoxins of Bacillus thuringiensis. Electronic Journal of Biotechnology, 7, 180–190.

    Google Scholar 

  13. Nair, M. S., & Dean, D. H. (2008). All domains of Cry1A toxins insert into insect brush border membranes. Journal of Biological Chemistry, 283, 26324–26331.

    Article  CAS  Google Scholar 

  14. Tounsi, S., J’Mal, A., Zouari, N., & Jaoua, S. (1999). Cloning and nucleotide sequence of a novel cry1Aa-type gene from Bacillus thuringiensis ssp. kurstaki. Biotechnology Letters, 21, 771–775.

    Article  CAS  Google Scholar 

  15. Gatehouse, J. A. (2008). Biotechnological prospects for engineering insect-resistant plants. Plant Physiology, 146, 881–887.

    Article  CAS  Google Scholar 

  16. Stobdan, T., Kaur, S., & Singh, A. (2004). Cloning and nucleotide sequence of a novel cry gene from Bacillus thuringiensis. Biotechnology Letters, 26, 1153–1156.

    Article  CAS  Google Scholar 

  17. Sanahuja, G., Banakar, R., Twyman, R. M., Capeel, T., & Christou, P. (2011). Bacillus thuringiensis: A century of research, development of commercial applications. Plant Biotechnology Journal, 9, 283–300.

    Article  CAS  Google Scholar 

  18. Chakrabarti, S. K., Mandaokar, A. D., Shukla, A., Pattanayak, D., Naik, P. S., & Kumar, P. A. (2000). Bacillus thuringiensis Cry1Ab confers resistance to potato against Helicoverpa armigera (Hubner). Potato Research, 43, 143–152.

    Article  CAS  Google Scholar 

  19. Subramanian, S., & Mohankumar, S. (2006). Genetic variability of the bollworm, Helicoverpa armigera occurring on different host plants. Journal of Insect Science, 6, 1–8.

    Article  CAS  Google Scholar 

  20. Rajamohan, F., Alzate, O., Contrill, J. A., Curtiss, A., & Dean, D. H. (1996). Protein engineering of Bacillus thuringiensis delta-endotoxin: mutations at domain II of cry1Ab enhance receptor affinity and toxicity toward gypsy moth larvae. Proceedings of the National Academy of Sciences USA, 93, 14338–14343.

    Article  CAS  Google Scholar 

  21. Vaughn, T., Cavato, T., Brar, G., Coombe, T., DeGooyer, T., Ford, S., et al. (2005). A method of controlling corn rootworm feeding using a Bacillus thuringiensis protein expressed in transgenic maize. Crop Science, 45, 931–938.

    Article  CAS  Google Scholar 

  22. Xue, J., Gemei, L., Neil, C., Haitao, L., Kanglai, H., Fuping, S., et al. (2008). Cloning and characterization of a novel cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects. FEMS Microbiology Letters, 280, 95–101.

    Article  CAS  Google Scholar 

  23. Darsi, S., Divya, Prakash. G., & Udayasuriyan, V. (2010). Cloning and characterization of truncated cry1Ab gene from a new indigenous isolate of Bacillus thuringiensis. Biotechnology Letters, 32, 1311–1315.

    Article  CAS  Google Scholar 

  24. Vimala-Devi, P. S., & Sudhakar, R. (2006). Effectiveness of a local strain of Bacillus thuringiensis in the management of castor semilooper Achaea janata on castor (Ricinus communis). Indian Journal of Agricultural Sciences, 76, 447–449.

    Google Scholar 

  25. Kaur, R., Virk, J. S., & Joshi, N. (2008). Bio-efficacy of DOR Bt, a Bacillus thuringiensis formulation against rice leaf folder, Cnaphalocrosis medinalis (Guenee) in Punjab. Biological Control, 22(2), 475–477.

    Google Scholar 

  26. Kandibane, M., Kumar, K., & Adiroubane, D. (2010). Effect of Bacillus thuringiensis Berliner formulation against the rice leaf folder Cnaphalocrocis medinalis Guenee (Pyralidae: Lepidoptera). Journal of Biopesticides, 3(2), 445–447.

    Google Scholar 

  27. Ben-Dov, E., Zaritsky, A., Dahan, E., Barak, Z., Sinai, R., Manasherob, R., et al. (1997). Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Applied and Environmental Microbiology, 63, 4883–4890.

    CAS  Google Scholar 

  28. Carozzi, N. B., Kramer, V. C., Warren, G. W., Evola, S., & Koziel, M. G. (1991). Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction production profiles. Applied and Environmental Microbiology, 57, 3057–3061.

    CAS  Google Scholar 

  29. Kalman, S. H., Kiehne, K., Libs, J., & Yamamoto, T. (1993). Cloning of a novel cry1C-type gene from a strain of B. thuringiensis subsp. Galleriae. Applied and Environmental Microbiology, 59, 1131–1137.

    CAS  Google Scholar 

  30. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual (3rd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory.

    Google Scholar 

  31. Bhalla, R., Monika, D., Panguluri, S. K., Borra, J., Mandaokar, A. D., Singh, A. K., et al. (2005). Isolation, characterization and expression of a noval vegetative insecticidal protein of Bacillus thuringiensis. FEMS Microbiology Letters, 243, 467–472.

    Article  CAS  Google Scholar 

  32. Crespo, A. L., Spencer, T. A., Nekl, E., Carey, M. P., Moar, W. J., & Siegfried, B. D. (2008). Comparison and validation of methods to quantify cry1Ab toxin from Bacillus thuringiensis for standardization of insect bioassay. Applied and Environmental Microbiology, 74, 130–135.

    Article  CAS  Google Scholar 

  33. Luo, K., Banks, D., & Adang, M. J. (1999). Toxicity, binding, and permeability analyses of four Bacillus thuringiensis cry1 delta-endotoxins use brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Applied and Environmental Microbiology, 65, 457–464.

    CAS  Google Scholar 

  34. Song, F., Zhang, J., & Gu, A. (2003). Identification of cry II-type genes from Bacillus thuringiensis strains and characterization of a novel cryII-type gene. Applied and Environmental Microbiology, 69, 5207–5211.

    Article  CAS  Google Scholar 

  35. Tailor, R., Tippet, J., Gibb, G., Pells, S., Pike, D., Jordon, L., et al. (1992). Identification and characterization of a novel Bacillus thuringiensis δ-endotoxin entomocidal to coleopteran and lepidopteran larvae. Molecular Microbiology, 7, 1211–1217.

    Article  Google Scholar 

  36. Ranjekar, P. K., Patankar, A., Gupta, V., Bhatnagar, R., Bentur, J., & Kumar, P. A. (2003). Genetic engineering of crop plants for insect resistance. Current Science, 84, 321–329.

    Google Scholar 

  37. Wang, J., Roets, A., Van Rie, J., & Ren, G. (2003). Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China. Journal of Invertebrate Pathology, 82, 63–71.

    Article  CAS  Google Scholar 

  38. Kumar, S., Chandra, A., & Pandey, K. C. (2008). Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy. Journal of Environmental Biology, 29, 641–653.

    CAS  Google Scholar 

  39. Sauka, D. H., Sanchez, J., Bravo, A., & Benintende, G. B. (2006). Toxicity of Bacillus thuringiensis delta-endotoxins against bean shoots borer (Epinotia aporema Wals.) larvae, a major soybean pest in Argentina. Journal of Invertebrate Pathology, 94, 125–129.

    Article  Google Scholar 

  40. Gao, Y., Hu, Y., Fu, Q., Zhang, J., Oppert, B., Lai, F., et al. (2010). Screen of Bacillus thuringiensis toxins for transgenic rice to control Sesamia inferens and Chilo suppressalis. Journal of Invertebrate Pathology, 105, 11–15.

    Article  CAS  Google Scholar 

  41. Sharma, P., Nain, V., Lakhanpaul, S., & Kumar, P. A. (2010). Synergistic activity between Bacillus thuringiensis Cry1Ab and Cry1Ac toxins against maize stem borer (Chilo partellus Swinhoe). Letters in Applied Microbiology, 51, 42–47.

    CAS  Google Scholar 

  42. Liao, C., Heckel, D. G., & Akhurst, R. (2002). Toxicity of Bacillus thuringiensis insecticidal proteins of Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae), major pests of cotton. Journal of Invertebrate Pathology, 80, 55–63.

    Article  CAS  Google Scholar 

  43. Zavala, L. E., Pardo-Lopez, L., Canton, P. E., Gomez, I., Soberon, M., & Bravo, A. (2011). Domains II and III of Bacillus thuringiensis Cry1Ab toxin remain exposed to the solvent after insertion of part of Domain I into the membrane. Journal of Biological Chemistry, 286, 19109–19117.

    Article  CAS  Google Scholar 

  44. Bravo, A., Soberon, M., & Gill, S. S. (2005). Bacillus thuringiensis and use. In L. I. Gilbert, K. Iatrou, & S. S. Gill (Eds.), Comprehensive Molecular Insect Science (pp. 175–206). New York: Elsevier.

    Chapter  Google Scholar 

  45. Kasyap, S., Singh, B. D., & Amla, D. V. (2010). Homology modeling deduced 3-D structure of the Cry1Ab17 toxin. Science Asia, 36, 280–285.

    Article  Google Scholar 

  46. Kasyap, S., Singh, B. D., & Amla, D. V. (2011). Homology modeling deduced 3-D structure of the Cry1Ab22 toxin. Indian Journal of Biotechnology, 10, 202–206.

    Google Scholar 

  47. Zhipeng, H., Chunhong, G., & xiong, G. (2004). Cloning, characterization and expression of a new cry1Ab gene from Bacillus thuringiensis WB9. Biotechnology Letters, 26, 1557–1561.

    Article  Google Scholar 

  48. Liu, C. W., Lin, C. C., Yiu, J. C., Chen, J. W., & Tseng, M. J. (2008). Expression of Bacillus thuringiensis toxin (cry1Ab) gen in cabbage (Brasica oleracea L. Var. capitata L.) chloroplasts confers high insecticidal efficacy against plutella xylostella. Theoretical and Applied Genetics, 117, 75–88.

    Article  CAS  Google Scholar 

  49. Sithanandam, S. (1987). Insect pests of pigeonpea and chickpea and their management. In M. V. Rao & S. Sithanandam (Eds.), Plant protection in field crops (pp. 159–173). Hyderabad: Plant Protection Association of India.

    Google Scholar 

Download references

Acknowledgments

The facilities and financial support provided by the Project Director, Directorate of Oilseeds Research, Hyderabad, is duly acknowledged. Authors are grateful to the comments and suggestions given by the two anonymous reviewers which helped improve the clarity in the MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Dinesh Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5524 kb)

Supplementary material 2 (DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, V.P., Rao, N.N., Devi, P.S.V. et al. Cloning, Characterization, and Expression of a New cry1Ab Gene from DOR Bt-1, an Indigenous Isolate of Bacillus thuringiensis . Mol Biotechnol 54, 795–802 (2013). https://doi.org/10.1007/s12033-012-9627-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9627-3

Keywords

Navigation