Molecular Biotechnology

, Volume 53, Issue 2, pp 228–235 | Cite as

Tell Me a Tale of TALEs

  • Alejandra Muñoz Bodnar
  • Adriana Bernal
  • Boris Szurek
  • Camilo E. López
Review

Abstract

Pathogenic bacteria of the Xanthomonas and Ralstonia genus have developed resourceful strategies creating a favorable environment to multiply and colonize their host plants. One of these strategies involves the secretion and translocation of several families of effector proteins into the host cell. The transcription activator-like effector (TALE) family forms a subset of proteins involved in the direct modulation of host gene expression. TALEs include a number of tandem 34-amino acid repeats in their central part, where specific residues variable in two adjacent positions determine DNA-binding in the host genome. The specificity of this binding and its predictable nature make TALEs a revolutionary tool for gene editing, functional analysis, modification of target gene expression, and directed mutagenesis. Several examples have been reported in higher organisms as diverse as plants, Drosophila, zebrafish, mouse, and even human cells. Here, we summarize the functions of TALEs in their natural context and the biotechnological perspectives of their use.

Keywords

TAL effector Xanthomonas Pathogenicity target Genome editing 

References

  1. 1.
    Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11, 539–548.CrossRefGoogle Scholar
  2. 2.
    Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host–microbe interactions: Shaping the evolution of the plant immune response. Cell, 124, 803–814.CrossRefGoogle Scholar
  3. 3.
    Bonas, U., & Van den Ackerveken, G. (1999). Gene-for-gene interactions: bacterial avirulence proteins specify plant disease resistance. Current Opinion in Microbiology, 2, 94–98.CrossRefGoogle Scholar
  4. 4.
    Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.CrossRefGoogle Scholar
  5. 5.
    Block, A., Li, G., Fu, Z. Q., & Alfano, J. R. (2008). Phytopathogen type III effector weaponry and their plant targets. Current Opinion in Plant Biology, 11, 396–403.CrossRefGoogle Scholar
  6. 6.
    Abramovitch, R. B., Anderson, J. C., & Martin, G. B. (2006). Bacterial elicitation and evasion of plant innate immunity. Nature Reviews Molecular Cell Biology , 7, 601–611.CrossRefGoogle Scholar
  7. 7.
    Block, A., & Alfano, J. R. (2011). Plant targets for Pseudomonas syringae type III effectors: Virulence targets or guarded decoys? Current Opinion in Microbiology, 14, 39–46.CrossRefGoogle Scholar
  8. 8.
    Li, H., Xu, H., Zhou, Y., Zhang, J., Long, C., Li, S., et al. (2007). The phosphothreonine lyase activity of a bacterial type III effector family. Science, 315, 1000–1003.CrossRefGoogle Scholar
  9. 9.
    Wang, Y., Li, J., Hou, S., Wang, X., Li, Y., Ren, D., et al. (2010). A Pseudomonas syringae ADP-ribosyltransferase inhibits arabidopsis mitogen-activated protein kinase kinases. Plant Cell, 22, 2033–2044.CrossRefGoogle Scholar
  10. 10.
    Zhang, J., Shao, F., Li, Y., Cui, H., Chen, L., Li, H., et al. (2007). A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host and Microbe, 1, 175–185.CrossRefGoogle Scholar
  11. 11.
    Zhang, Z., Wu, Y., Gao, M., Zhang, J., Kong, Q., Liu, Y., et al. (2012). Disruption of PAMP-Induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host and Microbe, 11, 253–263.CrossRefGoogle Scholar
  12. 12.
    Jelenska, J., Yao, N., Vinatzer, B. A., Wright, C. M., Brodsky, J. L., & Greenberg, J. T. (2007). A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Current Biology, 17, 499–508.CrossRefGoogle Scholar
  13. 13.
    Kim, J. G., Li, X., Roden, J. A., Taylor, K. W., Aakre, C. D., Su, B., et al. (2009). Xanthomonas T3S effector XopN suppresses PAMP-triggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1. Plant Cell, 21, 1305–1323.CrossRefGoogle Scholar
  14. 14.
    Canonne, J., Marino, D., Jauneau, A., Pouzet, C., Briere, C., Roby, D., et al. (2011). The Xanthomonas type III effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense. Plant Cell, 23, 3498–3511.CrossRefGoogle Scholar
  15. 15.
    Boch, J., & Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Annual review of Phytopathology, 48, 419–436.CrossRefGoogle Scholar
  16. 16.
    Saijo, Y., & Schulze-Lefert, P. (2008). Manipulation of the eukaryotic transcriptional machinery by bacterial pathogens. Cell Host and Microbe, 4, 96–99.CrossRefGoogle Scholar
  17. 17.
    Bogdanove, A. J., & Voytas, D. F. (2011). TAL effectors: Customizable proteins for DNA targeting. Science, 333, 1843.CrossRefGoogle Scholar
  18. 18.
    White, F. F., & Yang, B. (2009). Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiology, 150, 1677–1686.CrossRefGoogle Scholar
  19. 19.
    Yang, B., & White, F. F. (2004). Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Molecular Plant-Microbe Interactions, 17, 1192–1200.CrossRefGoogle Scholar
  20. 20.
    Yang, B., Sugio, A., & White, F. F. (2006). Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proceedings of the National Academy of Sciences of the United States of America, 103, 10503–10508.CrossRefGoogle Scholar
  21. 21.
    Yang, Y., Yuan, Q., & Gabriel, D. W. (1996). Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family. Molecular Plant-Microbe Interactions, 9, 105–113.CrossRefGoogle Scholar
  22. 22.
    Kay, S., Hahn, S., Marois, E., Hause, G., & Bonas, U. (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science, 318, 648–651.CrossRefGoogle Scholar
  23. 23.
    Bonas, U., Conrads-Strauch, J., & Balbo, I. (1993). Resistance in tomato to Xanthomonas campestris pv vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Molecular and General Genetics, 238, 261–269.Google Scholar
  24. 24.
    Romer, P., Hahn, S., Jordan, T., Strauss, T., Bonas, U., & Lahaye, T. (2007). Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science, 318, 645–648.CrossRefGoogle Scholar
  25. 25.
    Moscou, M. J., & Bogdanove, A. J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science, 326, 1501.CrossRefGoogle Scholar
  26. 26.
    Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509–1512.CrossRefGoogle Scholar
  27. 27.
    Murakami, M. T., Sforça, M. L., Neves, J. L., Paiva, J. H., Domingues, M. N., Pereira, A. L. A., et al. (2010). The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction. Proteins, 78, 3386–3395.CrossRefGoogle Scholar
  28. 28.
    Deng, D., Yan, C., Pan, X., Mahfouz, M., Wan, J., Zhu, J., et al. (2012). Structural basis for sequence-specific recognition of DNA by TAL effectors. Science, 335, 720–723.CrossRefGoogle Scholar
  29. 29.
    Nga-Sze Mak, A., Bradley, P., Cernadas, R. A., Bogdanove, A. J., & Stoddard, B. L. (2012). The crystal structure of TAL Effector PthXo1 bound to its DNA target. Science, 335, 717–719.Google Scholar
  30. 30.
    Schornack, S., Ballvora, A., Gürlebeck, D., Peart, J., Baulcombe, D., Ganal, M., et al. (2004). The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant Journal, 37, 46–60.CrossRefGoogle Scholar
  31. 31.
    Gu, K., Yang, B., Tian, D., Wu, L., Wang, D., Sreekala, C., et al. (2005). R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 435, 1122–1125.CrossRefGoogle Scholar
  32. 32.
    Bogdanove, A. J., Schornack, S., & Lahaye, T. (2010). TAL effectors: finding plant genes for disease and defense. Current Opinion in Plant Biology, 13, 394–401.CrossRefGoogle Scholar
  33. 33.
    Leach, J. E., Vera Cruz, C. M., Bai, J., & Leung, H. (2001). Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annual Review of Phytopathology, 39, 187–224.CrossRefGoogle Scholar
  34. 34.
    Swarup, S., Yang, Y., Kingsley, M. T., & Gabriel, D. W. (1992). An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhost. Molecular Plant-Microbe Interactions, 5, 204–213.CrossRefGoogle Scholar
  35. 35.
    De feyter, R., & Gabriel, D. W. (1991). At least six Avr genes are clustered on a 90-Kb plasmid in Xhanthomonas campestris pv. malvacearum. Molecular Plant-Microbe Interactions, 4, 423–432.CrossRefGoogle Scholar
  36. 36.
    Swarup, S., Feyter, R. D., Brlansky, R. H., & W, G. D. (1991). A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X.campestris to elicit canker like lesions in citrus. Phytopathology, 81, 802–809.CrossRefGoogle Scholar
  37. 37.
    Yang, Y., de Feyter, R., & Gabriel, D. W. (1994). Host-specific symptoms and increased release of Xanthomonas citri and X. campestris pv. malvacearum from leaves are determined by the 102-bp tandem repeats of pthA and avrb6, respectively. Molecular Plant-Microbe Interactions, 7, 345–355.CrossRefGoogle Scholar
  38. 38.
    Kay, S., Boch, J., & Bonas, U. (2005). Characterization of AvrBs3-like effectors from a Brassicaceae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture. Molecular Plant-Microbe Interactions, 18, 838–848.CrossRefGoogle Scholar
  39. 39.
    Chu, Z., Yuan, M., Yao, J., Ge, X., Yuan, B., Xu, C., et al. (2006). Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes and Development, 20, 1250–1255.CrossRefGoogle Scholar
  40. 40.
    Yuan, M., Chu, Z., Li, X., Xu, C., & Wang, S. (2010). The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell, 22, 3164–3176.CrossRefGoogle Scholar
  41. 41.
    Antony, G., Zhou, J., Huang, S., Li, T., Liu, B., White, F., et al. (2010). Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell, 22, 3864–3876.CrossRefGoogle Scholar
  42. 42.
    Yu, Y., Streubel, J., Balzergue, S., Champion, A., Boch, J., Koebnik, R., et al. (2011). Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene. Molecular Plant-Microbe Interactions, 24, 1102–1113.CrossRefGoogle Scholar
  43. 43.
    Chen, L.-Q., Hou, B.-H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X.-Q., et al. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468, 527–532.CrossRefGoogle Scholar
  44. 44.
    Sugio, A., Yang, B., Zhu, T., & White, F. F. (2007). Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIA gamma1 and OsTFX1 during bacterial blight of rice. PNAS, 104, 10720–10725.CrossRefGoogle Scholar
  45. 45.
    Geibler, R., Scholze, H., Hahn, S., Streubel, J., Bonas, U., Behrens, S., et al. (2011). Transcriptional activators of human genes with programmable DNA-specificty. PLoS ONE, 6, 1–6.CrossRefGoogle Scholar
  46. 46.
    Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics, 188, 773–782.CrossRefGoogle Scholar
  47. 47.
    Weinthal, D., Tovkach, A., Zeevi, V., & Tzfira, T. (2010). Genome editing in plant cells by zinc finger nucleases. Trends in Plant Science, 15, 308–321.CrossRefGoogle Scholar
  48. 48.
    Li, T., Huang, S., Jiang, W., Wright, D., Spalding, M., Weeks, D., et al. (2011). TAL nucleases (TALNs) hybrid proteins composed of TAL effectors and Fokl DNA-cleavage domain. Nucleic Acids Research, 39, 359–372.CrossRefGoogle Scholar
  49. 49.
    Cermak, T., Doyle, E., Christian, M., Wang, L., Zhang, Y., Schmidt, C., et al. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 1093, 1–11.Google Scholar
  50. 50.
    Mahfouz, M. M., Li, L., Shamimuzzaman, M., Wibowo, A., Fang, X., & Zhu, J. K. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proceedings of the National Academy of Sciences of the United States of America, 108, 2623–2628.CrossRefGoogle Scholar
  51. 51.
    Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., et al. (2012). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186, 757–761.CrossRefGoogle Scholar
  52. 52.
    Sander, J. D., Cade, L., Khayter, C., Reyon, D., Peterson, R. T., Joung, J. K., et al. (2011). Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotechnology, 29, 697–698.CrossRefGoogle Scholar
  53. 53.
    Tesson, L., Usal, C., Ménoret, S., Leung, E., Niles, B., Remy, S., et al. (2011). Knockout rats generated by embryo microinjection of TALENs. Nature Biotechnology, 29, 695–696.CrossRefGoogle Scholar
  54. 54.
    Hockemeyer, D., Wang, H., Kiani, S., Lai, C. S., Gao, Q., Cassady, J. P., et al. (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 29, 731–734.CrossRefGoogle Scholar
  55. 55.
    Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., et al. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29, 143–148.CrossRefGoogle Scholar
  56. 56.
    Streubel, J., Blucher, C., Landgraf, A., & Boch, J. (2012). TAL effector RVD specificities and efficiencies. Nature Biotechnology, 30, 593–595.CrossRefGoogle Scholar
  57. 57.
    Mahfouz, M. M., & Li, L. (2011). TALE nucleases and next generation GM crops. GM Crops, 2, 99–103.CrossRefGoogle Scholar
  58. 58.
    Cade, L., Reyon, D., Hwang, W. Y., Tsai, S. Q., Patel, S., Khayter, C., et al. (2012). Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Research, 40, 8001–8010.CrossRefGoogle Scholar
  59. 59.
    Bedell, V. M., Wang, Y., Campbell, J. M., Poshusta, T. L., Starker, C. G., Krug Ii, R. G., Tan, W., Penheiter, S. G., Ma, A. C., Leung, A. Y. H., Fahrenkrug, S. C., Carlson, D. F., Voytas, D. F., Clark, K. J., Essner, J. J. & Ekker, S. C. (2012). In vivo genome editing using a high-efficiency TALEN system. Nature. doi:10.1038/nature11537.
  60. 60.
    Moore, F. E., Reyon, D., Sander, J. D., Martinez, S. A., Blackburn, J. S., Khayter, C., et al. (2012). Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS ONE, 7, e37877.CrossRefGoogle Scholar
  61. 61.
    Huang, P., Xiao, A., Zhou, M., Zhu, Z., Lin, S., & Zhang, B. (2011). Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology, 29, 699–700.CrossRefGoogle Scholar
  62. 62.
    Tong, C., Huang, G., Ashton, C., Wu, H., Yan, H., & Ying, Q.-L. (2012). Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs. Journal of Genetics and Genomics, 39, 275–280.CrossRefGoogle Scholar
  63. 63.
    Liu, J., Li, C., Yu, Z., Huang, P., Wu, H., Wei, C., et al. (2012). Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. Journal of Genetics and Genomics, 39, 209–215.CrossRefGoogle Scholar
  64. 64.
    Sun, N., Liang, J., Abil, Z., & Zhao, H. (2012). Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Molecular BioSystems, 8, 1255–1263.CrossRefGoogle Scholar
  65. 65.
    Li, T., Huang, S., Zhao, X., Wright, D. A., Carpenter, S., Spalding, M. H., et al. (2011). Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Research, 39, 6315–6325.CrossRefGoogle Scholar
  66. 66.
    Reyon, D., Tsai, S. Q., Khayter, C., Foden, J. A., Sander, J. D., & Joung, J. K. (2012). FLASH assembly of TALENs for high-throughput genome editing. Nature Biotechnology, 30, 460–465.CrossRefGoogle Scholar
  67. 67.
    Li, T., Liu, B., Spalding, M. H., Weeks, D. P., & Yang, B. (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology, 30, 390–392.CrossRefGoogle Scholar
  68. 68.
    Watanabe, T., Ochiai, H., Sakuma, T., Horch, H. W., Hamaguchi, N., Nakamura, T., et al. (2012). Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nature Communications, 3, 1017.CrossRefGoogle Scholar
  69. 69.
    Yin, P., Deng, D., Yan, C., Pan, X., Xi, Jianzhong J., Yan, N. & Shi, Y. (2012). Specific DNA–RNA hybrid recognition by TAL effectors. Cell Reports, 2, 707–713.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Alejandra Muñoz Bodnar
    • 1
    • 3
  • Adriana Bernal
    • 2
  • Boris Szurek
    • 3
  • Camilo E. López
    • 1
  1. 1.Manihot Biotec Laboratory, Departamento de BiologíaUniversidad Nacional de ColombiaBogotáColombia
  2. 2.LAMFU LaboratoryUniversidad de los AndesBogotáColombia
  3. 3.UMR 186 IRD-UM2-Cirad “Résistance des Plantes aux Bioagresseurs”Montpellier Cedex 5France

Personalised recommendations