Skip to main content

Advertisement

Log in

Single Mutation in Shine-Dalgarno-Like Sequence Present in the Amino Terminal of Lactate Dehydrogenase of Plasmodium Effects the Production of an Eukaryotic Protein Expressed in a Prokaryotic System

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

One of the most important step in structure-based drug design studies is obtaining the protein in active form after cloning the target gene. In one of our previous study, it was determined that an internal Shine-Dalgarno-like sequence present just before the third methionine at N-terminus of wild type lactate dehydrogenase enzyme of Plasmodium falciparum prevent the translation of full length protein. Inspection of the same region in P. vivax LDH, which was overproduced as an active enzyme, indicated that the codon preference in the same region was slightly different than the codon preference of wild type PfLDH. In this study, 5′-GGAGGC-3′ sequence of P. vivax that codes for two glycine residues just before the third methionine was exchanged to 5′-GGAGGA-3′, by mimicking P. falciparum LDH, to prove the possible effects of having an internal SD-like sequence when expressing an eukaryotic protein in a prokaryotic system. Exchange was made by site-directed mutagenesis. Results indicated that having two glycine residues with an internal SD-like sequence (GGAGGA) just before the third methionine abolishes the enzyme activity due to the preference of the prokaryotic system used for the expression. This study emphasizes the awareness of use of a prokaryotic system to overproduce an eukaryotic protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization (WHO). (2008). World malaria report 2008. Switzerland: WHO Press.

    Google Scholar 

  2. Baird, J. K. (2004). Chloroquine resistance in Plasmodium vivax. Antimicrobial Agents and Chemotherapy, 48, 4075–4083.

    Article  CAS  Google Scholar 

  3. Patel, A. P., Staines, H. M., & Krishna, S. (2008). New antimalarial targets: The example of glucose transport. Travel Medicine and Infectious Disease, 6, 58–66.

    Article  Google Scholar 

  4. Royer, R. E., Deck, L. M., Campos, N. M., Hunsaker, L. A., David, L., & Jagt, V. (1986). Biologically active derivatives of gossypol: Synthesis and antimalarial activities of peri-acylated gossylic nitriles. Journal of Medicinal Chemistry, 29, 1799–1801.

    Article  CAS  Google Scholar 

  5. Azevedo, W. F., & Soares, M. B. P. (2009). Selection of targets for drug development against protozoan parasites. Current Drug Targets, 10, 193–201.

    Article  Google Scholar 

  6. Dunn, C. R., Banfield, M. J., Barker, J. J., Higham, C. W., Moreton, K. M., Turgut-Balik, D., et al. (1996). The structure of lactate dehydrogenase from plasmodium falciparum reveals a new target for anti-malarial design. Nature Structural & Biology, 11, 912–915.

    Article  Google Scholar 

  7. Turgut-Balik, D., & Holbrook, J. J. (2001). Determination of the DNA and amino acid sequences of the lactate dehydrogenase gene from Plasmodium falciparum, strains K1 and PF FCBR: A route to the design of new antimalarials. Turkish Journal of Biology, 25, 241–250.

    Google Scholar 

  8. Turgut-Balik, D., Shoemark, D. K., Sessions, R. B., Moreton, K. M., & Holbrook, J. J. (2001). Mutagenic exploration of the active site of lactate dehydrogenase from Plasmodium falciparum. Biotechnology Letters, 23, 923–927.

    Article  CAS  Google Scholar 

  9. Turgut-Balik, D., Shoemark, D. K., Moreton, K. M., Sessions, R. B., & Holbrook, J. J. (2001). Over-production of lactate dehydrogenase from Plasmodium falciparum opens route to new antimalarials. Biotechnology Letters, 23, 917–921.

    Article  CAS  Google Scholar 

  10. Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., et al. (2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 419(6906), 498–511.

    Article  CAS  Google Scholar 

  11. Berriman, M., Ghedin, E., Hertz-Fowler, C., Blandin, G., Renauld, H., Bartholomeu, D. C., et al. (2005). The genome of the African trypanosome Trypanosoma brucei. Science, 309, 416–422.

    Article  CAS  Google Scholar 

  12. Ivens, A. C., Peacock, C. S., Worthey, E. A., Murphy, L., Aggarwa, l. G., Berriman, M., et al. (2005). The genome of the kinetoplastid parasite, Leishmania major. Science, 309, 436–442.

    Article  Google Scholar 

  13. Fernandez-Robledo, J. A., & Vasta, G. R. (2010). Production of recombinant proteins from protozoan parasites. Trends in Parasitology, 26(5), 244–254.

    Article  CAS  Google Scholar 

  14. Mehlin, C., Boni, E., Buckner, F. S., Engel, L., Feist, T., Gelb, M. H., et al. (2006). Heterologous expression of proteins from Plasmodium falciparum: Results from 1000 genes. Molecular and Biochemical Parasitology, 148, 144–160.

    Article  CAS  Google Scholar 

  15. Vedadi, M., Lew, J., Artz, J., Amani, M., Zhao, Y., Dong, A., et al. (2007). Genome-scale protein expression and structural biology of Plasmodium falciparum and related Apicomplexan organisms. Molecular and Biochemical Parasitology, 151(1), 100–110.

    Article  CAS  Google Scholar 

  16. Cregg, J. M., Cereghino, J. L., Shi, J., & Higgins, D. R. (2002). Recombinant protein expression in Pichia pastoris. Molecular Biotechnology, 16, 23–52.

    Article  Google Scholar 

  17. Mattanovich, D., Branduardi, P., Dato, L., Gasser, B., Sauer, M., & Porro, D. (2012). Recombinant protein production in yeasts. Methods in Molecular Biology, 824(4), 329–358.

    Article  CAS  Google Scholar 

  18. Sahdev, S., Khattar, S. K., & Saini, K. S. (2008). Production of active eukaryotic proteins through bacterial expression systems: A review of the existing biotechnology strategies. Molecular and Cellular Biochemistry, 307, 249–264.

    Article  CAS  Google Scholar 

  19. Makino, T., Skretas, G., & Georgiou, G. (2011). Strain engineering for improved expression of recombinant proteins in bacteria. Microbial Cell Factories, 10, 32.

    Article  CAS  Google Scholar 

  20. Shine, J., & Dalgarno, L. (1974). The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites. Proceedings of the National academy of Sciences of the United States of America, 71(4), 1342–1346.

    Article  CAS  Google Scholar 

  21. Ma, J., Campbell, A., & Karlin, S. (2002). Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. Journal of Bacteriology, 184(20), 5733–5745.

    Article  CAS  Google Scholar 

  22. Chang, B., Halgamuge, S., & Tang, S. (2006). Analysis of SD sequences in completed microbial genomes: Non- SD-led genes are as common as SD-led genes. Gene, 373, 90–99.

    Article  CAS  Google Scholar 

  23. Schurr, T., Nadir, E., & Margalit, H. (1993). Identification and characterization of E. coli ribosomal binding sites by free energy computation. Nucleic Acids Research, 21, 4019–4023.

    Article  CAS  Google Scholar 

  24. Weiss, R. B., Dunn, D. M., Dahlberg, A. E., Atkins, J. F., & Gesteland, R. F. (1988). Reading frame switch caused by base-pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. The EMBO Journal, 7(5), 1503–1507.

    CAS  Google Scholar 

  25. Wen, J., Lancaster, L., Hodges, C., Zeri, A., Yoshimura, S. H., Noller, H. F., et al. (2008). Following translation by single ribosomes one codon at a time. Nature, 452, 389–409.

    Article  Google Scholar 

  26. Larsen, B., Wills, N. M., Gesteland, R. F., & Atkins, J. F. (1994). rRNA-mRNA base pairing stimulates a programmed-1 ribosomal frameshift. Journal of Bacteriology, 176(22), 6842–6851.

    CAS  Google Scholar 

  27. Li, G., Oh, E., & Weissman, J. S. (2012). The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature, 484(7395), 538–541.

    Article  CAS  Google Scholar 

  28. Pannola, L. (2010). A plausible role for the presence of internal Shine-Dalgarno sites. Bioinformatics and Biology Insights, 4, 55–60.

    Article  Google Scholar 

  29. Bzik, D. L., Fox, B. A., & Gonyer, K. (1993). Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli. Molecular and Biochemical Parasitology, 59, 155–166.

    Article  CAS  Google Scholar 

  30. Turgut-Balik, D., Akbulut, E., Shoemark, D. K., Celik, V., Moreton, K. M., Sessions, R. B., et al. (2004). Cloning, sequence and expression of the lactate dehydrogenase gene from the human malaria parasite, Plasmodium vivax. Biotechnology Letters, 26, 1051–1055.

    Article  CAS  Google Scholar 

  31. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual I–II–III (3rd ed.). New York: CSHL Press.

    Google Scholar 

  32. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  33. Brown, W. M., Yowell, C. A., Hoard, A., Vander Jagt, T. A., Hunsaker, L. A., Deck, L. M., et al. (2004). Comparative structural analysis and kinetic properties of lactate dehydrogenases from the four species of human malarial parasites. Biochemistry, 43(20), 6219–6229.

    Article  CAS  Google Scholar 

  34. Winter, V. J., Cameron, A., Tranter, R., Sessions, R. B., & Brady, R. L. (2003). Crystal structure of Plasmodium berghei lactate dehydrogenase indicates the unique structural differences of these enzymes are shared across the Plasmodium genus. Molecular and Biochemical Parasitology, 131(1), 1–10.

    Article  CAS  Google Scholar 

  35. Backendorf, C., Overbeek, G. P., van Boom, J. H., Van der Marel, G., Veeneman, G., & van Duin, J. (1980). Recognition of the 16S RNA in ribosome messenger recognition. European Journal of Biochemistry, 110, 599–604.

    Article  CAS  Google Scholar 

  36. de Smit, M. H., & van Duin, J. (1990). Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proceedings of the National academy of Sciences of the United States of America, 87, 7668–7672.

    Article  Google Scholar 

  37. Farwell, M. A., Roberts, M. W., & Rabinowitz, J. C. (1992). The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Molecular Microbiology, 6, 3375–3383.

    Article  CAS  Google Scholar 

  38. de Smit, M. H., & van Duin, J. (2003). Translational standby sites: How ribosomes may deal with the rapid folding kinetics of mRNA. Journal of Molecular Biology, 331, 737–743.

    Article  Google Scholar 

  39. Priano, C., Arora, R., Jayant, L., & Mills, D. R. (1997). Translational activation in coliphage Qb: On a polycistronic messenger RNA, repression of one gene can activate translation of another. Journal of Molecular Biology, 271, 299–310.

    Article  CAS  Google Scholar 

  40. Jayant, L., Priano, C., & Mills, D. R. (2010). In polycistronic Qb RNA, single-strandedness at one ribosome binding site directly affects translational initiations at a distal upstream cistron. Nucleic Acids Research, 38(20), 7199–7210.

    Article  CAS  Google Scholar 

  41. Kim, J. H., & Pack, M. Y. (1993). Over-production of extracellular endoglucanase by genetically engineered Bacillus subtilis. Biotechnology Letters, 15, 133–138.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilek Turgut-Balik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cicek, M., Mutlu, O., Erdemir, A. et al. Single Mutation in Shine-Dalgarno-Like Sequence Present in the Amino Terminal of Lactate Dehydrogenase of Plasmodium Effects the Production of an Eukaryotic Protein Expressed in a Prokaryotic System. Mol Biotechnol 54, 602–608 (2013). https://doi.org/10.1007/s12033-012-9602-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9602-z

Keywords

Navigation