Skip to main content

Advertisement

Log in

Development of Oligoclonal Nanobodies for Targeting the Tumor-Associated Glycoprotein 72 Antigen

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The tumor-associated glycoprotein 72 (TAG-72) is a membrane mucin whose over-expression is correlated with advanced tumor stage and increased invasion and metastasis. In this study, we identified a panel of four nanobodies, single variable domains of dromedary heavy-chain antibodies that specifically recognize the TAG-72 antigen. All selected nanobodies were shown to selectively bind to this cancer-related molecule with low-nanomolar affinities and do not cross-react with other antigens, such as MUC1 or HER2. Furthermore, they can detect TAG-72 in concentrations as low as 5 U/ml which is valuable in sensitive detection of this molecule in cancerous patients. Cell ELISA experiments proved their ability for binding to the native target antigen on TAG-72 expressing cells while not showing any reactivity to HT-29 cells, a TAG-72-negative cell line. Using competition studies, we found that each nanobody recognizes a distinct epitope on the TAG-72 antigen that is different from the one recognized by the mouse anti-TAG-72 antibody, CC49. Considering their high specificity, reduced immunogenicity and multi-targeting behavior, these oligoclonal nanobodies represent a promising tool to target TAG-72 over-expressing tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CDR:

Complementari determining region

Fab:

Fragment antigen binding

FR:

Framework region

HAMA:

Human anti-mouse antibody

IPTG:

Isopropyl-β-d-thiogalactopyranoside

scFv:

Single chain variable fragment

mAb:

Monoclonal antibody

TAG-72:

Tumor-associated glycoprotein 72

TMB:

Tetramethylbenzidine

VHH:

Variable heavy-chain domain of heavy-chain antibody

References

  1. Andrianifahanana, M., Moniaux, N., & Batra, S. K. (2006). Regulation of mucin expression: Mechanistic aspects and implications for cancer and inflammatory diseases. Biochimica et Biophysica Acta, 1765, 189–222.

    CAS  Google Scholar 

  2. Jonckheere, N., & Van Seuningen, I. (2010). The membrane-bound mucins: From cell signalling to transcriptional regulation and expression in epithelial cancers. Biochimie, 92, 1–11.

    Article  CAS  Google Scholar 

  3. Kufe, D. W. (2009). Mucins in cancer: Function, prognosis and therapy. Nature Reviews Cancer, 9, 874–885.

    Article  CAS  Google Scholar 

  4. Thor, A., Ohuchi, N., Szpak, C. A., Johnston, W. W., & Schlom, J. (1986). Distribution of oncofetal antigen tumor-associated glycoprotein-72 defined by monoclonal antibody B72.3. Cancer Research, 46, 3118–3124.

    CAS  Google Scholar 

  5. Thor, A., Viglione, M. J., Muraro, R., Ohuchi, N., Schlom, J., & Gorstein, F. (1987). Monoclonal antibody B72.3 reactivity with human endometrium: A study of normal and malignant tissues. International Journal of Gynecological Pathology, 6, 235–247.

    Article  CAS  Google Scholar 

  6. Nuti, M., Teramoto, Y. A., Mariani-Costantini, R., Hand, P. H., Colcher, D., & Schlom, J. (1982). A monoclonal antibody (B72.3) defines patterns of distribution of a novel tumor-associated antigen in human mammary carcinoma cell populations. International Journal of Cancer, 29, 539–545.

    Article  CAS  Google Scholar 

  7. Muraro, R., Kuroki, M., Wunderlich, D., Poole, D. J., Colcher, D., Thor, A., et al. (1988). Generation and characterization of B72.3 second generation monoclonal antibodies reactive with the tumor-associated glycoprotein 72 antigen. Cancer Research, 48, 4588–4596.

    CAS  Google Scholar 

  8. Bell, J., Mojzisik, C., Hinkle, G, Jr., Derman, H., Schlom, J., & Martin, E. (1990). Intraoperative radioimmunodetection of ovarian cancer using monoclonal antibody B72.3 and a portable gamma-detecting probe. Obstetrics and Gynecology, 76, 607–611.

    CAS  Google Scholar 

  9. Meredith, R. F., Bueschen, A. J., Khazaeli, M. B., Plott, W. E., Grizzle, W. E., Wheeler, R. H., et al. (1994). Treatment of metastatic prostate carcinoma with radiolabeled antibody CC49. The Journal of Nuclear Medicine, 35, 1017–1022.

    CAS  Google Scholar 

  10. Colcher, D., Milenic, D. E., Ferroni, P., Carrasquillo, J. A., Reynolds, J. C., Roselli, M., et al. (1990). In vivo fate of monoclonal antibody B72.3 in patients with colorectal cancer. The Journal of Nuclear Medicine, 31, 1133–1142.

    CAS  Google Scholar 

  11. Divgi, C. R., Scott, A. M., Dantis, L., Capitelli, P., Siler, K., Hilton, S., et al. (1995). Phase I radioimmunotherapy trial with iodine-131-CC49 in metastatic colon carcinoma. The Journal of Nuclear Medicine, 36, 586–592.

    CAS  Google Scholar 

  12. Xiang, J. H., Roder, J., & Hozumi, N. (1990). Production of murine V-human Cr1 chimeric anti-TAG72 antibody using V region cDNA amplified by PCR. Molecular Immunology, 27, 809–817.

    Article  CAS  Google Scholar 

  13. Kashmiri, S. V., Shu, L., Padlan, E. A., Milenic, D. E., Schlom, J., & Hand, P. H. (1995). Generation, characterization, and in vivo studies of humanized anticarcinoma antibody CC49. Hybridoma, 14, 461–473.

    Article  CAS  Google Scholar 

  14. Rahbarizadeh, F., Rasaee, M. J., Forouzandeh, M., Allameh, A., Sarrami, R., Nasiry, H., et al. (2005). The production and characterization of novel heavy-chain antibodies against the tandem repeat region of MUC1 mucin. Immunological Investigations, 34, 431–452.

    Article  CAS  Google Scholar 

  15. Ahmadvand, D., Rasaee, M. J., Rahbarizadeh, F., Kontermann, R. E., & Sheikholislami, F. (2009). Cell selection and characterization of a novel human endothelial cell specific nanobody. Molecular Immunology, 46, 1814–1823.

    Article  CAS  Google Scholar 

  16. Harmsen, M. M., & De Haard, H. J. (2007). Properties, production, and applications of camelid single-domain antibody fragments. Applied Microbiology and Biotechnology, 77, 13–22.

    Article  CAS  Google Scholar 

  17. Rahbarizadeh, F., Ahmadvand, D., & Sharifzadeh, Z. (2011). Nanobody; an old concept and new vehicle for immunotargeting. Immunological Investigations, 40, 299–338.

    Article  CAS  Google Scholar 

  18. Logtenberg, T. (2007). Antibody cocktails: Next-generation biopharmaceuticals with improved potency. Trends in Biotechnology, 25, 390–394.

    Article  CAS  Google Scholar 

  19. Sharon, J., Liebman, M. A., & Williams, B. R. (2005). Recombinant polyclonal antibodies for cancer therapy. Journal of Cellular Biochemistry, 96, 305–313.

    Article  CAS  Google Scholar 

  20. Newcombe, C., & Newcombe, A. R. (2007). Antibody production: Polyclonal-derived biotherapeutics. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 848, 2–7.

    Article  CAS  Google Scholar 

  21. Arbabi Ghahroudi, M., Desmyter, A., Wyns, L., Hamers, R., & Muyldermans, S. (1997). Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Letters, 414, 521–526.

    Article  CAS  Google Scholar 

  22. Hoogenboom, H. R., Lutgerink, J. T., Pelsers, M. M., Rousch, M. J., Coote, J., Van Neer, N., et al. (1999). Selection-dominant and nonaccessible epitopes on cell-surface receptors revealed by cell-panning with a large phage antibody library. European Journal of Biochemistry, 260, 774–784.

    Article  CAS  Google Scholar 

  23. Alvarez-Rueda, N., Behar, G., Ferre, V., Pugniere, M., Roquet, F., Gastinel, L., et al. (2007). Generation of llama single-domain antibodies against methotrexate, a prototypical hapten. Molecular Immunology, 44, 1680–1690.

    Article  CAS  Google Scholar 

  24. Rahbarizadeh, F., Rasaee, M. J., Forouzandeh, M., & Allameh, A. A. (2006). Over expression of anti-MUC1 single-domain antibody fragments in the yeast Pichia pastoris. Molecular Immunology, 43, 426–435.

    Article  CAS  Google Scholar 

  25. Dumoulin, M., Conrath, K., Van Meirhaeghe, A., Meersman, F., Heremans, K., Frenken, L. G., et al. (2002). Single-domain antibody fragments with high conformational stability. Protein Science, 11, 500–515.

    Article  CAS  Google Scholar 

  26. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  27. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  28. Engvall, E. (1980). Enzyme immunoassay ELISA and EMIT. Methods in Enzymology, 70, 419–439.

    Article  CAS  Google Scholar 

  29. Hombach, A., Heuser, C., Sircar, R., Tillmann, T., Diehl, V., Kruis, W., et al. (1997). T cell targeting of TAG72+ tumor cells by a chimeric receptor with antibody-like specificity for a carbohydrate epitope. Gastroenterology, 113, 1163–1170.

    Article  CAS  Google Scholar 

  30. Saerens, D., Stijlemans, B., Baral, T. N., Nguyen Thi, G. T., Wernery, U., Magez, S., et al. (2008). Parallel selection of multiple anti-infectome Nanobodies without access to purified antigens. Journal of Immunological Methods, 329, 138–150.

    Article  CAS  Google Scholar 

  31. Beatty, J. D., Beatty, B. G., & Vlahos, W. G. (1987). Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. Journal of Immunological Methods, 100, 173–179.

    Article  CAS  Google Scholar 

  32. Domingo, N., Grosclaude, J., Bekaert, E., Mege, D., Chapman, M., Shimizu, S., et al. (1992). Epitope mapping of the human biliary amphipathic, anionic polypeptide: Similarity with a calcium-binding protein isolated from gallstones and bile, and immunologic cross-reactivity with apolipoprotein AI. Journal of Lipid Research, 33, 1419–1430.

    CAS  Google Scholar 

  33. Beck, A., Wurch, T., Bailly, C., & Corvaia, N. (2010). Strategies and challenges for the next generation of therapeutic antibodies. Nature Reviews Immunology, 10, 345–352.

    Article  CAS  Google Scholar 

  34. Holliger, P., & Hudson, P. J. (2005). Engineered antibody fragments and the rise of single domains. Nature Biotechnology, 23, 1126–1136.

    Article  CAS  Google Scholar 

  35. Coppieters, K., Dreier, T., Silence, K., de Haard, H., Lauwereys, M., Casteels, P., et al. (2006). Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis and Rheumatism, 54, 1856–1866.

    Article  CAS  Google Scholar 

  36. Cortez-Retamozo, V., Backmann, N., Senter, P. D., Wernery, U., De Baetselier, P., Muyldermans, S., et al. (2004). Efficient cancer therapy with a nanobody-based conjugate. Cancer Research, 64, 2853–2857.

    Article  CAS  Google Scholar 

  37. Mutuberria, R., Hoogenboom, H. R., van der Linden, E., de Bruine, A. P., & Roovers, R. C. (1999). Model systems to study the parameters determining the success of phage antibody selections on complex antigens. Journal of Immunological Methods, 231, 65–81.

    Article  CAS  Google Scholar 

  38. Ohuchi, N., Gero, E., Mori, S., Akimoto, M., Matoba, N., Nishihira, T., et al. (1990). Clinical evaluation of CA72-4 immunoradiometric assay for serum TAG-72 antigen in patients with carcinoma. Journal of Tumor Marker Oncology, 5, 1–10.

    Google Scholar 

  39. Rudnick, S. I., & Adams, G. P. (2009). Affinity and avidity in antibody-based tumor targeting. Cancer Biotherapy and Radiopharmaceuticals, 24, 155–161.

    Article  CAS  Google Scholar 

  40. Ouyang, M., Wu, W., Zou, Y., Zhou, J., Wang, Z., & Wan, X. (2010). Immunoreactivity and prognostic value of tumor-associated glycoprotein 72 in primary gallbladder carcinoma. Surgical Oncology, 19, 82–87.

    Article  Google Scholar 

  41. Slovin, S. F., Scher, H. I., Divgi, C. R., Reuter, V., Sgouros, G., Moore, M., et al. (1998). Interferon-gamma and monoclonal antibody 131I-labeled CC49: Outcomes in patients with androgen-independent prostate cancer. Clinical Cancer Research, 4, 643–651.

    CAS  Google Scholar 

  42. Hand, P. H., Colcher, D., Salomon, D., Ridge, J., Noguchi, P., & Schlom, J. (1985). Influence of spatial configuration of carcinoma cell populations on the expression of a tumor-associated glycoprotein. Cancer Research, 45, 833–840.

    Google Scholar 

  43. Sadeqzadeh, E., Rahbarizadeh, F., Ahmadvand, D., Rasaee, M. J., Parhamifar, L., & Moghimi, S. M. (2011). Combined MUC1-specific nanobody-tagged PEG-polyethylenimine polyplex targeting and transcriptional targeting of tBid transgene for directed killing of MUC1 over-expressing tumour cells. Journal of Controlled Release, 156, 85–91.

    Article  CAS  Google Scholar 

  44. Iri-Sofla, F. J., Rahbarizadeh, F., Ahmadvand, D., & Rasaee, M. J. (2011). Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase. Experimental Cell Research, 317, 2630–2641.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Oliver Jay Broom (KIPA—Krahbichler Intellectual Property Advisors AB, 251 10 Helsingborg, Sweden) and Dr. Ladan Parhamifar (Center of Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark) for their critical language revision of the manuscript. This study was supported by Pasteur Institute of Iran, Tehran, Iran and the Biotechnology committee of Tarbiat Modares University (TMU-88-8-67), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Rahbarizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharifzadeh, Z., Rahbarizadeh, F., Shokrgozar, M.A. et al. Development of Oligoclonal Nanobodies for Targeting the Tumor-Associated Glycoprotein 72 Antigen. Mol Biotechnol 54, 590–601 (2013). https://doi.org/10.1007/s12033-012-9601-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9601-0

Keywords

Navigation