Skip to main content

Advertisement

Log in

Targeting of the Enhanced Green Fluorescent Protein Reporter to Adrenergic Cells in Mice

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Adrenaline and noradrenaline are important neurotransmitter hormones that mediate physiological stress responses in adult mammals, and are essential for cardiovascular function during a critical period of embryonic/fetal development. In this study, we describe a novel mouse model system for identifying and characterizing adrenergic cells. Specifically, we generated a reporter mouse strain in which a nuclear-localized enhanced green fluorescent protein gene (nEGFP) was inserted into exon 1 of the gene encoding Phenylethanolamine n-methyltransferase (Pnmt), the enzyme responsible for production of adrenaline from noradrenaline. Our analysis demonstrates that this knock-in mutation effectively marks adrenergic cells in embryonic and adult mice. We see expression of nEGFP in Pnmt-expressing cells of the adrenal medulla in adult animals. We also note that nEGFP expression recapitulates the restricted expression of Pnmt in the embryonic heart. Finally, we show that nEGFP and Pnmt expressions are each induced in parallel during the in vitro differentiation of pluripotent mouse embryonic stem cells into beating cardiomyocytes. Thus, this new mouse genetic model should be useful for the identification and functional characterization of adrenergic cells in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thomas, S. A., Matsumoto, A. M., & Palmiter, R. D. (1995). Noradrenaline is essential for mouse fetal development. Nature, 374, 643–646.

    Article  CAS  Google Scholar 

  2. Zhou, Q. Y., Quaife, C. J., & Palmiter, R. D. (1995). Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature, 374, 640–643.

    Article  CAS  Google Scholar 

  3. Kvetnansky, R., Sabban, E. L., & Palkovits, M. (2009). Catecholaminergic systems in stress: Structural and molecular genetic approaches. Physiological Reviews, 89, 535–606.

    Article  CAS  Google Scholar 

  4. Bao, X., Lu, C. M., Liu, F., Gu, Y., Dalton, N. D., Zhu, B. Q., et al. (2007). Epinephrine is required for normal cardiovascular responses to stress in the phenylethanolamine N-methyltransferase knockout mouse. Circulation, 116, 1024–1031.

    Article  CAS  Google Scholar 

  5. Ignarro, L. J., & Shideman, F. E. (1968). Appearance and concentrations of catecholamines and their biosynthesis in the embryonic and developing chick. Journal of Pharmacology and Experimental Therapeutics, 159, 38–48.

    CAS  Google Scholar 

  6. Ebert, S. N., Baden, J. M., Mathers, L. H., Siddall, B. J., & Wong, D. L. (1996). Expression of phenylethanolamine n-methyltransferase in the embryonic rat heart. Journal of Molecular and Cellular Cardiology, 28, 1653–1658.

    Article  CAS  Google Scholar 

  7. Ebert, S. N., & Thompson, R. P. (2001). Embryonic epinephrine synthesis in the rat heart before innervation: Association with pacemaking and conduction tissue development. Circulation Research, 88, 117–124.

    Article  CAS  Google Scholar 

  8. Ebert, S. N., Rong, Q., Boe, S., Thompson, R. P., Grinberg, A., & Pfeifer, K. (2004). Targeted insertion of the Cre-recombinase gene at the phenylethanolamine n-methyltransferase locus: A new model for studying the developmental distribution of adrenergic cells. Developmental Dynamics, 231, 849–858.

    Article  CAS  Google Scholar 

  9. Bohn, M. C., Goldstein, M., & Black, I. B. (1982). Expression of phenylethanolamine N-methyltransferase in rat sympathetic ganglia and extra-adrenal chromaffin tissue. Developmental Biology, 89, 299–308.

    Article  CAS  Google Scholar 

  10. Hammang, J. P., Bohn, M. C., & Messing, A. (1992). Phenylethanolamine N-methyltransferase (PNMT)-expressing horizontal cells in the rat retina: A study employing double-label immunohistochemistry. The Journal of Comparative Neurology, 316, 383–389.

    Article  CAS  Google Scholar 

  11. Ziegler, M. G., Bao, X., Kennedy, B. P., Joyner, A., & Enns, R. (2002). Location, development, control, and function of extraadrenal phenylethanolamine N-methyltransferase. Annals of the New York Academy of Sciences, 971, 76–82.

    Article  CAS  Google Scholar 

  12. Ziegler, M. G., Kennedy, B. P., & Houts, F. W. (1998). Extra-adrenal nonneuronal epinephrine and phenylethanolamine-N-methyltransferase. Advances in Pharmacology, 42, 843–846.

    Article  CAS  Google Scholar 

  13. Davidoff, M. S., Ungefroren, H., Middendorff, R., Koeva, Y., Bakalska, M., Atanassova, N., et al. (2005). Catecholamine-synthesizing enzymes in the adult and prenatal human testis. Histochemistry and Cell Biology, 124, 313–323.

    Article  CAS  Google Scholar 

  14. Pendleton, R. G., Gessner, G., & Sawyer, J. (1978). Studies on the distribution of phenylethanolamine N-methyltransferase and epinephrine in the rat. Research Communications in Chemical Pathology and Pharmacology, 21, 315–325.

    CAS  Google Scholar 

  15. Andreassi, J. L., Eggleston, W. B., & Stewart, J. K. (1998). Phenylethanolamine N-methyltransferase mRNA in rat spleen and thymus. Neuroscience Letters, 241, 75–78.

    Article  CAS  Google Scholar 

  16. Andreassi, J. L., Eggleston, W. B., Fu, G., & Stewart, J. K. (1998). Phenylethanolamine N-methyltransferase mRNA in rat hypothalamus and cerebellum. Brain Research, 779, 289–291.

    Article  CAS  Google Scholar 

  17. Bergquist, J., Tarkowski, A., Ekman, R., & Ewing, A. (1994). Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop. Proceedings of the National Academy of Sciences of the United States of America, 91, 12912–12916.

    Article  CAS  Google Scholar 

  18. Josefsson, E., Bergquist, J., Ekman, R., & Tarkowski, A. (1996). Catecholamines are synthesized by mouse lymphocytes and regulate function of these cells by induction of apoptosis. Immunology, 88, 140–146.

    Article  CAS  Google Scholar 

  19. Ebert, S. N., Rong, Q., Boe, S., & Pfeifer, K. (2008). Catecholamine-synthesizing cells in the embryonic mouse heart. Annals of the New York Academy of Sciences, 1148, 317–324.

    Article  Google Scholar 

  20. Farley, F. W., Soriano, P., Steffen, L. S., & Dymecki, S. M. (2000). Widespread recombinase expression using FLPeR (flipper) mice. Genesis, 28, 106–110.

    Article  CAS  Google Scholar 

  21. Maltsev, V. A., Wobus, A. M., Rohwedel, J., Bader, M., & Hescheler, J. (1994). Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circulation Research, 75, 233–244.

    Article  CAS  Google Scholar 

  22. Wobus, A. M., Wallukat, G., & Hescheler, J. (1991). Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation, 48, 173–182.

    Article  CAS  Google Scholar 

  23. Van Overstraeten-Schlogel, N., Delgaudine, M., Beguin, Y., & Gothot, A. (2006). Limitations of the use of GFP transgenic mice in bone marrow transplantation studies. Leukaemia & Lymphoma, 47, 1392–1393.

    Article  Google Scholar 

  24. Swenson, E. S., Price, J. G., Brazelton, T., & Krause, D. S. (2007). Limitations of green fluorescent protein as a cell lineage marker. Stem Cells, 25, 2593–2600.

    Article  CAS  Google Scholar 

  25. Harper, C. V., Finkenstadt, B., Woodcock, D. J., Friedrichsen, S., Semprini, S., Ashall, L., et al. (2011). Dynamic analysis of stochastic transcription cycles. PLoS Biology, 9, e1000607.

    Article  CAS  Google Scholar 

  26. Held, W., & Kunz, B. (1998). An allele-specific, stochastic gene expression process controls the expression of multiple Ly49 family genes and generates a diverse, MHC-specific NK cell receptor repertoire. European Journal of Immunology, 28, 2407–2416.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by funding from the NIH (HL78716) to S.N.E., and intramural NICHD funds to K.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven N. Ebert.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

12033_2012_9570_MOESM1_ESM.tif

Supplemental Figure 1. Control Pnmt +/+ mouse adrenal gland sections. (A) nEGFP expression (green). (B) Anti-GFP IF staining (red). (C) DAPI nuclear stain (blue). (D) Overlay of images obtained in panels A-C. Scale bar, 30 μm. Only the medulla region of the adrenal section is shown for comparison with positive staining observed in Fig. 5. (TIFF 2599 kb)

12033_2012_9570_MOESM2_ESM.tif

Supplemental Figure 2. Fluorescence expression and staining in control undifferentiated mESCs. (A) nEGFP expression (green). (B) Anti-GFP IF staining (red). (C) DAPI nuclear stain (blue). (D) Overlay of images obtained in panels A-C. Scale bar, 10 μm. (TIFF 4653 kb)

12033_2012_9570_MOESM3_ESM.tif

Supplemental Figure 3. Fluorescence expression and staining in cardiac-differentiated (7 + 5d) mESCs. (A) nEGFP expression (green). (B) Anti-GFP IF staining (red). (C) DAPI nuclear stain (blue). (D) Overlay of images obtained in panels A-C. Scale bar, 10 μm. (TIFF 1607 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, J., Varudkar, N., Baker, C.N. et al. Targeting of the Enhanced Green Fluorescent Protein Reporter to Adrenergic Cells in Mice. Mol Biotechnol 54, 350–360 (2013). https://doi.org/10.1007/s12033-012-9570-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9570-3

Keywords

Navigation