Skip to main content
Log in

Anti-Digoxin Fab Variants Generated by Phage Display

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Digoxin is a pharmaceutical used in the control of cardiac dysfunction. Its therapeutic window is narrow, with effect dosage very close to the toxic dosage. To counteract the toxic effect, polyclonal Fab fragments are commercially available. Our study is based on a monoclonal anti-digoxin antibody, which would provide a product with a specific potency and more precise dosage for the detoxification of patients under digoxin treatment. Phage display technology was used to select variants with high affinity. From an anti-digoxin hybridoma, RNA was extracted for subsequent cDNA synthesis. Specific primers were used for the LC and Fd amplifications, then cloned sequentially in a phagemid vector (pComb3X) for the combinatorial Fab library construction. Clones were selected for their ability to bind to digoxin-BSA. The presence of light and heavy chains was checked, randomly selected clones then sequenced and induced to produce soluble Fabs, and subsequently analyzed for anti-digoxin expression. Out of ten clones randomly chosen, six resulted positive expression of the product. The sequencing of these revealed two identical clones and one presenting a pseudogene in the LC. Four clones presenting variations in the framework1 showed binding to digoxin-BSA by ELISA and western blotting. The specific binding was further confirmed by Biacore®, which allowed ranking of the clones. The development of these clones allowed the selection of variants with higher affinity than the original version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams, K. F, Jr, Fonarow, G. C., Emermam, C. L., LeJemtel, T. H., Constanzo, M. R., Abraham, W. T., et al. (2005). Characteristics and outcomes of patients hospitalized for heart failure in the United States: Rationale, design, and preliminar observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). American Heart Journal, 149, 209–216.

    Article  Google Scholar 

  2. Gheorghiade, M., van Veldhuisen, D. J., & Colucci, W. S. (2006). Contemporary use of digoxin in the management of cardiovascular disorders. Circulation, 113, 2556–2564.

    Article  Google Scholar 

  3. Andrés, V. L. G. (2000). Revisión sistemática sobre la efectividad e indicaciones de los anticuerpos antidigoxina en la intoxicación digitálica. Revista Espanola de Cardiologia, 53, 49–58.

    Article  Google Scholar 

  4. Antman, E. M., & Smith, T. W. (1985). Digitalis toxicity. Annual Review of Medicine, 36, 357–367.

    Article  CAS  Google Scholar 

  5. Butler, V. P, Jr, & Chen, J. P. (1967). Digoxin-specific antibodies. Proceedings of the National Academy of Sciences of the United States of America, 57, 71–78.

    Article  CAS  Google Scholar 

  6. Smith, T. W., Haber, E., Yetman, L., & Butler,. Jr. (1976). Reversal of advanced digoxin intoxication with Fab fragments of digoxin-specific antibodies. The New England Journal of Medicine, 294, 797–800.

    Article  CAS  Google Scholar 

  7. Butler, V. P, Jr, Schmidt, D. H., Smith, T. W., Haber, E., Raynor, B. D., & Demartini, P. (1977). Effects of sheep digoxin-specific antibodies and their Fab fragments on digoxin pharmacokinetics in dogs. The Journal of Clinical Investigation, 59, 345–359.

    Article  CAS  Google Scholar 

  8. Lapostolle, F., Borron, S. W., Verdier, C., Taboulet, P., Guerrier, G., Adnet, F., et al. (2008). Digoxin-specific Fab fragments as single first-line therapy in digitalis poisoning. Critical Care Medicine, 36, 3014–3018.

    Article  CAS  Google Scholar 

  9. Eichhorn, E. J., & Gheorghiade, M. (2002). Digoxin. Progress in Cardiovascular Diseases, 44, 251–266.

    Article  CAS  Google Scholar 

  10. Flanagan, R. J., & Jones, A. L. (2004). Fab antibody fragments: some applications in clinical toxicology. Drug Safety, 27, 1115–1133.

    Article  CAS  Google Scholar 

  11. Kwong, K. Y. & Rader, C. (2009). E. coli expression and purification of Fab antibody fragments, in Current Protocols in Protein Science, vol. 55 Chapter 6: Purification of Recombinant Proteins (Wiley) pp. 6.10.1, 6.10.14.

  12. Smith, G. P. (1985). Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science, 228, 1315–1317.

    Article  CAS  Google Scholar 

  13. Orlandi, R., Güssow, D. H., Jones, P. T., & Winter, G. (1989). Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proceedings of the National Academy of Sciences of the United States of America, 86, 3833–3837.

    Article  CAS  Google Scholar 

  14. McCafferty, J., Griffiths, A. D., Winter, G., & Chiswell, D. J. (1990). Phage antibodies: Filamentous phage displaying antibody variable domains. Nature, 348, 552–554.

    Article  CAS  Google Scholar 

  15. Barbas, C. F, 3rd, Kang, A. S., Lerner, R. A., & Benkovic, S. J. (1991). Assembly of combinatorial antibody libraries on phage surfaces: The gene III site. Proceedings of the National Academy of Sciences of the United States of America, 88, 7978–7982.

    Article  CAS  Google Scholar 

  16. Clackson, T., Hoogenboom, H. R., Griffiths, A. D., & Winter, G. (1991). Making antibody fragments using phage display libraries. Nature, 352, 624–628.

    Article  CAS  Google Scholar 

  17. Paula De, F. J. (1993) Fração sérica de pacientes urêmicos expandidos com atividade digoxina-símile inibidora da Na+K+ATPase: Isolamento, efeitos biológicos e caracterização com anticorpos monoclonais, Ph.D. thesis, University of São Paulo, São Paulo, BR.

  18. Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S., & Foeller, C. (1991). Sequences of proteins of immunological interest. Bethesda, MD: US Department of Health and Human Services, Public Health Sciences, National Institute of Health.

    Google Scholar 

  19. Barbas, C. F., Burton, D. R., Scott, J. K., & Silverman, G. J. (2001). Phage display: A laboratory manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  20. Tsuruta, L. R., Tomioka, Y., Hishinuma, T., Kato, Y., Itoh, K., Suzuki, T., et al. (2003). Characterization of 11-dehydro-thromboxane B2 recombinant antibody obtained by phage display technology. Prostaglandins Leukotrienes and Essential Fatty Acids, 68, 273–284.

    Article  CAS  Google Scholar 

  21. Erlanger, B. F., & Beiser, S. M. (1964). Antibodies specific for ribonucleosides and ribonucleotides and their reaction with DNA. Proceedings of the National Academy of Sciences of the United States of America, 52, 68–74.

    Article  CAS  Google Scholar 

  22. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    CAS  Google Scholar 

  23. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). ClustalW and ClustalX version 2.0. Bioinformatics, 23, 2947–2948.

    Article  CAS  Google Scholar 

  24. Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., McCafferty, J., Griffiths, A. D., & Winter, G. (1991). By-passing immunization. Human antibodies from V-gene libraries displayed on phage. Journal of Molecular Biology, 222, 581–597.

    Article  CAS  Google Scholar 

  25. Arap, M. A. (2005). Phage display technology—applications and innovations. Genetics and Molecular Biology, 28, 1–9.

    Article  CAS  Google Scholar 

  26. Levy, R., Molineux, I. J., Iverson, B. L., & Georgiou, G. (2007). Isolation of trans-acting genes that enhance soluble expression of scFv antibodies in the E. coli cytoplasm by lambda phage display. Journal of Immunological Methods, 321, 164–173.

    Article  CAS  Google Scholar 

  27. Kuba, H., Furukawa, A., Okajima, T., & Furukawa, K. (2008). Efficient bacterial production of functional antibody fragments using a phagemid vector. Protein Expression and Purification, 58, 292–300.

    Article  CAS  Google Scholar 

  28. Schasfoort, R. B. M., & Tudos, A. J. (2008). Handbook of surface plasmon resonance. Cambridge: Royal Society of Chemistry Publishing.

    Book  Google Scholar 

  29. Rinderknecht, M., Villa, A., Ballmer-Hofer, K., Neri, D., & Detmar, M. (2010). Phage-derived fully human monoclonal antibody fragments to human vascular endothelial growth factor-C block its interaction with VEGF receptor-2 and 3. PLoS ONE, 5, e11941.

    Article  Google Scholar 

  30. Hunter, M. M., Margolies, M. N., Ju, A., & Haber, E. (1982). High-affinity monoclonal antibodies to the cardiac glycoside, digoxin. Journal of Immunology, 129, 1165–1172.

    CAS  Google Scholar 

  31. Mudgett-Hunter, M., Anderson, W., Haber, E., & Margolies, M. N. (1985). Binding and structural diversity among high-affinity monoclonal anti-digoxin antibodies. Molecular Immunology, 22, 477–488.

    Article  CAS  Google Scholar 

  32. Schildbach, J. F., Panka, D. J., Parks, D. R., Jager, G. C., Novotny, J., Herzenberg, L. A., et al. (1991). Altered hapten recognition by two anti-digoxin hybridoma variants due to variable region point mutations. Journal of Biological Chemistry, 266, 4640–4647.

    CAS  Google Scholar 

  33. Schildbach, J. F., Near, R. I., Bruccoleri, R. E., Haber, E., Jeffrey, P. D., Ng, S. C., et al. (1993). Heavy chain position 50 is a determinant of affinity and specificity for the anti-digoxin antibody 26-10. Journal of Biological Chemistry, 268, 21739–21747.

    CAS  Google Scholar 

  34. Schildbach, J. F., Shaw, S. Y., Bruccoleri, R. E., Haber, E., Herzenberg, L. A., Jager, G. C., et al. (1994). Contribution of a single heavy chain residue to specificity of an anti-digoxin monoclonal antibody. Protein Science, 3, 737–749.

    Article  CAS  Google Scholar 

  35. Short, M. K., Jeffrey, P. D., Kwong, R. F., & Margolies, M. N. (1995). Contribution of antibody heavy chain CDR1 to digoxin binding analyzed by random mutagenesis of phage-displayed Fab 26-10. Journal of Biological Chemistry, 270, 28541–28550.

    Article  CAS  Google Scholar 

  36. Panka, D. J., Mudgett-Hunter, M., Parks, D. R., Peterson, L. L., Herzenberg, L. A., Haber, E., et al. (1988). Variable region framework differences result in decreased or increased affinity of variant anti-digoxin antibodies. Proceedings of the National Academy of Sciences of the United States of America, 85, 3080–3084.

    Article  CAS  Google Scholar 

  37. Caldas, C., Coelho, V., Kalil, J., Moro, A. M., Maranhão, A. Q., & Brígido, M. M. (2003). Humanization of the anti-CD18 antibody 6.7: An unexpected effect of a framework residue in binding to antigen. Molecular Immunology, 39, 941–952.

    Article  CAS  Google Scholar 

  38. Horwitz, A. H., Nadell, R., Preugschat, F., & Better, M. (1994). Chimeric immunoglobulin light chains are secreted at different levels: Influence of framework-1 amino acids. Molecular Immunology, 31, 683–692.

    Article  CAS  Google Scholar 

  39. Bong, Y. S., Cho, S. H., Nham, S. U., & Lee, Y. I. (1998). Cloning and characterization of cDNAs coding for heavy and light chains of agglutinating monoclonal antibody (HAG12islrh) specific for human red blood cells. Biochimica et Biophysica Acta, 10, 156–158.

    Article  Google Scholar 

  40. Lai, Y. S., John, J. A., Guo, I. C., Chen, S. C., Fang, K., & Chang, C. Y. (2002). In vitro efficiency of intra- and extracellular immunization with mouse anti-YGNNV antibody against yellow grouper nervous necrosis virus. Vaccine, 20, 3221–3229.

    Article  CAS  Google Scholar 

  41. Argiriadi, M. A., Xiang, T., Wu, C., Ghayur, T., & Borhani, D. W. (2009). Unusual water-mediated antigenic recognition of the proinflammatory cytokine interleukin-18. Journal of Biological Chemistry, 36, 24478–24489.

    Article  Google Scholar 

  42. Gonçalves, O., Dintinger, T., Lebreton, J., Blanchard, D., & Tellier, C. (2000). Mechanism of an antibody-catalysed allylic isomerization. The Biochemical Journal, 3, 691–698.

    Article  Google Scholar 

  43. Golinelli-Pimpaneau, B., Goncalves, O., Dintinger, T., Blanchard, D., Knossow, M., & Tellier, C. (2000). Structural evidence for a programmed general base in the active site of a catalytic antibody. Proceedings of the National Academy of Sciences of the United States of America, 18, 9892–9895.

    Article  Google Scholar 

  44. Costagliola, S., Bonomi, M., Morgenthaler, N. G., Van Durme, J., Panneels, V., Refetoff, S., et al. (2004). Delineation of the discontinuous-conformational epitope of a monoclonal antibody displaying full in vitro and in vivo thyrotropin activity. Molecular Endocrinology, 18, 3020–3034.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work received support from CNPq (Brazilian Council for Research) as part of Ana Maria Moro grants. We are thankful to Dr. Carlos F. Barbas for providing the pComb3X vector under license. The skillful technical help of Andre Luis Inocencio, Angelica Garbuio, and Rose Campos Targino is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Moro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, V.M., Schmidt, M.C.B., Kalil, J. et al. Anti-Digoxin Fab Variants Generated by Phage Display. Mol Biotechnol 54, 269–277 (2013). https://doi.org/10.1007/s12033-012-9564-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9564-1

Keywords

Navigation