Skip to main content
Log in

Early Changes in Gene Expression Induced by Acute UV Exposure in Leaves of Psychotria brachyceras, a Bioactive Alkaloid Accumulating Plant

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

UV-B radiation can damage biomolecules, such as DNA, RNA, and proteins, halting essential cellular processes; this damage is partly due to ROS generation. Plant secondary metabolites may protect against UV-B. Psychotria brachyceras Müll. Arg. (Rubiaceae), a subtropical shrub, produces brachycerine, a monoterpene indole alkaloid mainly accumulated in leaf tissues, which displays antioxidant and antimutagenic activities. Exposure of P. brachyceras cuttings to UV-B radiation significantly increases leaf brachycerine concentration. It has been suggested that this alkaloid might contribute to protection against UV-B damage both through its quenching activity on ROS and as UV shield. To identify differentially expressed genes of P. brachyceras in response to UV-B and investigate a possible influence of this stimulus on putative brachycerine-related genes, suppressive subtractive hybridization was applied. Complementary DNA from UV-B-treated leaves for 24 h was used as tester, and cDNA from untreated leaves, as driver. After BLASTX alignments, 134 sequences matched plant genes. Using quantitative RT-PCR, selected genes potentially related to brachycerine showed significant increases in transcription after UV-B exposure: tryptophan decarboxylase, ACC oxidase, UDP-glucose glucosyltransferase, lipase, and serine/threonine kinase. Results suggest a possible involvement of brachycerine in acute UV-B responses and show that alkaloid accumulation seems at least partly regulated at transcriptional level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Caldwell, M. M., Ballaré, C. L., Bornman, J. F., Flint, S. D., Björn, L. O., Teramura, A. H., et al. (2003). Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photochemistry and Photobiology, 2, 29–38.

    CAS  Google Scholar 

  2. Caputo, C., Rutitzky, M., & Ballaré, C. L. (2006). Solar ultraviolet-B radiation alters the attractiveness of Arabidopsis plants to diamondback moths (Plutella xylostella L.): impacts on oviposition and involvement of the jasmonic acid pathway. Oecologia, 149, 81–90.

    Article  Google Scholar 

  3. Jenkins, G. I. (2009). Signal transduction in responses to UV-B radiation. Annual Review of Plant Biology, 60, 407–431.

    Article  CAS  Google Scholar 

  4. Frohnmeyer, H., & Staiger, D. (2003). Ultraviolet-B radiation-mediated responses in plants: balancing damage and protection. Plant Physiology, 133, 1420–1428.

    Article  CAS  Google Scholar 

  5. Jansen, M. A. K., Gaba, V., & Greenberg, B. (1998). Higher plants and UV-B radiation: Balancing damage, repair and acclimation. Trends in Plant Sciences, 3, 131–135.

    Article  Google Scholar 

  6. Ban, Y., Honda, C., Bessho, H., Pang, X., & Moriguchi, T. (2007). Suppression subtractive hybridization identifies genes induced in response to UV-B irradiation in apple skin: isolation of a putative UDP-glucose 4-epimerase. Journal of Experimental Botany, 58, 1825–1834.

    Article  CAS  Google Scholar 

  7. Hollósy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron, 33, 179–197.

    Article  Google Scholar 

  8. Hahlbrock, K., & Scheel, D. (1989). Physiology and molecular biology of phenylpropanoid metabolism. Annual Review Plant Physiology and Plant Molecular Biology, 40, 347–369.

    Article  CAS  Google Scholar 

  9. Schmitz-Hoerner, R., & Weissenböck, G. (2003). Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels. Phytochemistry, 64, 243–255.

    Article  CAS  Google Scholar 

  10. Binder, B. Y., Peebles, C. A., Shanks, J. V., & San, K. Y. (2009). The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Biotechnology Progress, 25, 861–865.

    Article  CAS  Google Scholar 

  11. Hartmann, T. (1991). Alkaloids. In G. A. Rosenthal & M. R. Berenbaum (Eds.), Herbivores: Their interaction with secondary plant metabolites (Vol. 1, pp. 79–121). San Diego: Academic Press.

    Chapter  Google Scholar 

  12. Lydon, J., Casale, J. F., Kong, H., Sullivan, J. H., Daughtry, C. S., & Bailey, B. (2009). The effects of ambient solar UV radiation on alkaloid production by Erythroxylum novogranatense var. novogranatense. Photochemistry and Photobiology, 85, 1156–1161.

    Article  CAS  Google Scholar 

  13. Hirata, K., Asada, M., Yatani, E., Miyamoto, K., & Miura, Y. (1993). Effects of near-ultraviolet light on alkaloid production in Catharanthus roseus plants. Planta Medica, 59, 46–50.

    Article  CAS  Google Scholar 

  14. Hirata, K., Horiuchi, M., Asada, M., Ando, T., Miyamoto, K., & Miura, Y. (1992). Stimulation of dimeric alkaloid production by near-ultraviolet light in multiple shoot cultures of Catharanthus roseus. Journal of Fermentation and Bioengineering, 73, 222–225.

    Article  Google Scholar 

  15. Ramani, S., & Chelliah, J. (2007). UV-B-induced signaling events leading to the enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC Plant Biology, 7, 61.

    Article  Google Scholar 

  16. Ouwerkerk, P. B., Hallard, D., Verpoorte, R., & Memelink, J. (1999). Identification of UV-B light-responsive regions in the promoter of the tryptophan decarboxylase gene from Catharanthus roseus. Plant Molecular Biology, 41, 491–503.

    Article  CAS  Google Scholar 

  17. Green, R., & Fluhr, R. (1995). UV-B-induced PR-1 accumulation is mediated by active oxygen species. Plant Cell, 7, 203–212.

    CAS  Google Scholar 

  18. Mackerness, S., John, C. F., Jordan, B. R., & Thomas, B. (2001). Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Letters, 489, 237–242.

    Article  CAS  Google Scholar 

  19. Gregianini, T. S., Porto, D. D., do Nascimento, N. C., Fett, J. P., Henriques, A. T., & Fett-Neto, A. G. (2004). Environmental and ontogenetic control of accumulation of brachycerine, a bioactive indole alkaloid from Psychotria brachyceras. Journal of Chemical Ecology, 30, 2023–2036.

    Article  CAS  Google Scholar 

  20. Kerber, V. A., Gregianini, T. S., Paranhos, J. T., Schwambach, J., Farias, F., Fett, J. P., et al. (2001). Brachycerine, a novel monoterpene indole alkaloid from Psychotria brachyceras. Journal Natural Products, 64, 677–679.

    Article  CAS  Google Scholar 

  21. Gregianini, T. S., Silveira, V. C., Porto, D. D., Kerber, V. A., Henriques, A. T., & Fett-Neto, A. G. (2003). The alkaloid brachycerine is induced by ultraviolet radiation and is a singlet oxygen quencher. Photochemistry and Photobiology, 78, 470–474.

    Article  CAS  Google Scholar 

  22. Nascimento, N. C., Fragoso, V., Moura, D. J., Silva, A. C. R., Fett-Neto, A. G., & Saffi, J. (2007). Antioxidant and antimutagenic effects of the crude foliar extract and the alkaloid brachycerine of Psychotria brachyceras. Environmental and Molecular Mutagenesis, 48, 728–734.

    Article  Google Scholar 

  23. Diatchenko, L., Lau, Y. F., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., et al. (1996). Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probe and libraries. Proceedings of the National Academy of Sciences USA, 93, 6025–6030.

    Article  CAS  Google Scholar 

  24. Caldwell, M. M. (1971). Solar UV irradiation and growth and development of higher plants. In A. C. Giese (Ed.), Photophysiology, Vol. 4. New York: Academic Press.

    Google Scholar 

  25. Barsalobres-Cavallari, C. F., Severino, F. E., Maluf, M. P., & Maia, I. G. (2009). Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Molecular Biology, 10, 1.

    Article  Google Scholar 

  26. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology, 139, 5–17.

    Article  CAS  Google Scholar 

  27. Kim, B., Nam, H., Kim, S., & Chang, Y. (2003). Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnology Letters, 25, 1869–1872.

    Article  CAS  Google Scholar 

  28. Almeida, M. R., Ruedell, C. M., Ricachenevsky, F. K., Sperotto, R. A., Pasquali, G., & Fett-Neto, A. G. (2010). Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill. BMC Molecular Biology, 11, 1–12.

    Article  Google Scholar 

  29. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  30. Brosché, M., & Strid, A. (2003). Molecular events following perception of ultraviolet-B radiation by plants. Physiologia Plantarum, 117, 1–10.

    Article  Google Scholar 

  31. Strid, A. (1993). Increased expression of defence genes in Pisum sativum after exposure to supplementary ultraviolet-B radiation. Plant Cell Physiology, 34, 949–953.

    CAS  Google Scholar 

  32. Willekens, H., Van Camp, W., Van Montagu, M., Inzé, D., Langebartels, C., & Sandermann, H., Jr. (1994). Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. Plant Physiology, 106, 1007–1014.

    CAS  Google Scholar 

  33. Demkura, P. V., Abdala, G., Baldwin, I. T., & Ballaré, C. L. (2010). Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiology, 152, 1084–1095.

    Article  CAS  Google Scholar 

  34. Izaguirre, M., Mazza, C. A., Svatos, A., Baldwin, I. T., & Ballaré, C. L. (2007). Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses in Nicotiana attenuata and Nicotiana longiflora. Annals of Botany, 99, 103–109.

    Article  CAS  Google Scholar 

  35. Surplus, S. L., Jordan, B. R., Murphy, A. M., Carr, J. P., Thomas, B., & Mackerness, S. A.-H. (1998). Ultraviolet-B-induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant, Cell and Environment, 21, 685–694.

    Article  CAS  Google Scholar 

  36. Ries, G., Heller, W., Puchta, H., Sandermann, H., Seidlitz, H. K., & Hohn, B. (2000). Elevated UV-B radiation reduces genome stability in plants. Nature, 406, 98–101.

    Article  CAS  Google Scholar 

  37. Sperotto, R. A., Ricachenevsky, F. K., Duarte, G. L., Boff, T., Lopes, K. L., Sperb, E. R., et al. (2009). Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta, 230, 985–1002.

    Article  CAS  Google Scholar 

  38. Li, D. M., Staehelin, C., Zhang, Y. S., & Peng, S. L. (2009). Identification of genes differentially expressed in Mikania micrantha during Cuscuta campestris infection by suppression subtractive hybridization. Journal of Plant Physiology, 166, 1423–1435.

    Article  CAS  Google Scholar 

  39. Park, J. S., Choung, M. G., Kim, J. B., Hahn, B. S., Kim, J. B., Bae, S. C., et al. (2007). Genes up-regulated during red coloration in UV-B irradiated lettuce leaves. Plant Cell Reports, 26, 507–516.

    Article  CAS  Google Scholar 

  40. Zinser, C., Seidlitz, H. K., Welzl, G., Sandermann, H., Heller, W., Ernst, D., et al. (2007). Transcriptional profiling of summer wheat, grown under different realistic UV-B irradiation regimes. Journal of Plant Physiology, 164, 913–922.

    Article  CAS  Google Scholar 

  41. Gutierrez, L., Mauriat, M., Guénin, S., Pelloux, J., Lefebvre, J., Louvet, R., et al. (2008). The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology Journal, 6, 609–618.

    Article  CAS  Google Scholar 

  42. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., & Vandesompele, J. (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology, 8, 19.

    Article  Google Scholar 

  43. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., et al. (2002). Accurate normalisation of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, 1–11.

    Article  Google Scholar 

  44. Andersen, C. L., Jensen, J. L., & Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250.

    Article  CAS  Google Scholar 

  45. Ramani, S., & Jayabaskaran, C. (2008). Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light. Journal of Molecular Signaling, 3, 9–14.

    Article  Google Scholar 

  46. A-H-Mackerness, S., Surplus, S. L., Blake, P., John, C. F., Buchannan-Wollaston, V., Jordan, B. R., et al. (1999). Ultraviolet-B-induced stress and changes in gene expression in Arabidopsis thaliana: role of signalling pathways controlled by jasmonic acid, ethylene and reactive oxygen species. Plant, Cell and Environment, 22, 1413–1423.

    Article  Google Scholar 

  47. Conconi, A., Smerdon, M. J., Howe, G. A., & Ryan, C. A. (1996). The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature, 383, 826–829.

    Article  CAS  Google Scholar 

  48. Kende, H. (1993). Ethylene biosynthesis. Annual Review Plant Physiology and Plant Molecular Biology, 44, 283–307.

    Article  CAS  Google Scholar 

  49. Roowi, S. H., Ho, C.-L., Alwee, S. S. R. S., Abdullah, M. O., & Napis, S. (2010). Isolation and characterization of differentially expressed transcripts from the suspension cells of oil palm (Elaeis guineensis Jacq.) in response to different concentration of auxins. Molecular Biotechnology, 46, 1–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Brazilian Science Agencies CNPq (National Council for Scientific and Technological Development), CAPES (National Commission for Graduate Program Evaluation), and Fapergs (State Foundation for Research Support of Rio Grande do Sul). The authors thank Felipe K. Ricachenevsky, Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil, for helpful technical tips and discussions, and Shana de Souto Weber, Center for Biotechnology, UFRGS, Porto Alegre, RS, Brazil for providing bacterial competent cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Germano Fett-Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

do Nascimento, N.C., Menguer, P.K., Sperotto, R.A. et al. Early Changes in Gene Expression Induced by Acute UV Exposure in Leaves of Psychotria brachyceras, a Bioactive Alkaloid Accumulating Plant. Mol Biotechnol 54, 79–91 (2013). https://doi.org/10.1007/s12033-012-9546-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9546-3

Keywords

Navigation