Skip to main content
Log in

Quantitative Expression Analysis of TaSOS1 and TaSOS4 Genes in Cultivated and Wild Wheat Plants Under Salt Stress

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Salt stress is a mixture of ionic, osmotic, and oxidative stresses. The expression of TaSOS1 (a transmembrane Na+/H+ antiporter) and TaSOS4 [a cytoplasmic pyridoxal (PL) kinase] genes were measured in four different salinity levels and different time courses of salinity exposure using qRT-PCR technique. Mahuti (salt tolerant) and Alamut (salt sensitive) cultivars were used as cultivated wheat, and T. boeticum and Aegilops crassa as wild wheat plants. Salt-induced expression of TaSOS1 in these wild wheat plants indicates the presence of active TaSOS1 gene on the genomes A and D. The TaSOS1 and TaSOS4 transcript levels were found to be downregulated after salt treatment in all cultivars except in A. crassa, which was in contrast with its expression pattern in roots that was being upregulated from a very low-basal expression, after salt treatments. Duncan’s Multiple Range Test showed a significant difference between expression in the 200-mM NaCl concentration with the 50 and 100 mM for the TaSOS1 gene, and no significant difference for TaSOS4. Lack of significant correlation between the TaSOS1 and TaSOS4 gene expressions confirms the theory that PLP has no significant effect on the expression of the TaSOS1 gene in wheat leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amthor, J. S., & McCree, K. J. (1990). Carbon balance of stressed plants: A conceptual model for integrating research results. In R. G. Ascher & J. R. Cumming (Eds.), Stress responses in plants: Adaptation and acclimation mechanisms (pp. 1–15). Wilmington, DE, USA: Wiley-Liss, Inc.

    Google Scholar 

  2. Apse, M. P., & Blumwald, E. (2002). Engineering salt tolerance in plants. Current Opinion in Biotechnology, 13, 146–150.

    Article  CAS  Google Scholar 

  3. Barkla, B. J., & Pantoja, O. (1996). Physiology of ion transport across the tonoplast of higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 127–157.

    Article  Google Scholar 

  4. Benderradji, L., Brini, F., Amar, S. B., Kellou, K., Azaza, J., Masmoudi, K., et al. (2011). Sodium transport in the seedlings of two bread wheat (Triticum aestivum L.) genotypes showing contrasting salt stress tolerance. Australian Journal of Crop Science, 5(3), 233–241.

    CAS  Google Scholar 

  5. Blumwald, E., Aharon, G. S., & Apse, M. P. (2000). Sodium transport in plant cells. Biochimica et Biophysica Acta, 1465, 140–151.

    Article  CAS  Google Scholar 

  6. Caldana, C., Scheible, W. R., Roeber, B. M., & Ruzicic, S. (2007). A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Methods, 3, 7.

    Article  Google Scholar 

  7. Chen, Z. H., Pottosin, I. I., Cuin, T. A., et al. (2007). Root plasma membrane transporters controlling K+/Na+ homeostasis in saltstressed barley. Plant Physiology, 145, 1714–1725.

    Article  CAS  Google Scholar 

  8. Cuin, T. A., Tian, Y., Betts, S. A., Chalmandrier, R., & Shabala, S. (2009). Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Functional Plant Biology, 36, 1110–1119.

    Article  CAS  Google Scholar 

  9. Cuin, T. A., Bose, J., Stefano, G., Jha, D., Tester, M., Mancuso, S., et al. (2011). Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: In planta quantification methods. Plant, Cell and Environment, 34, 947–961. doi:10.1111/j.1365-3040.2011.02296.x.

    Article  CAS  Google Scholar 

  10. Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., & Munns, R. (2005). Control of sodium transport in durum wheat. Plant Physiology, 137, 807–818.

    Article  CAS  Google Scholar 

  11. Epstein, E. (1972). Mineral nutrition of plants: Principles and perspectives. New York: Wiley.

    Google Scholar 

  12. Gamarian, M., Malboobi, M., & Alizadeh, H. (2009). Expression analysis of salt stress induced genes in two salt-sensitive and –tolerant wheat cultivars. Genetic Novin, 4(1), 27–40.

    Google Scholar 

  13. Ganeshan, S., Vitamvas, P., Fowler, D. B., & Chibbar, R. N. (2008). Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. The Journal of Experimental Botany, 59, 2393–2402.

    Article  CAS  Google Scholar 

  14. Ghavami, F., Malboobi, M. A., Ghannadha, M. R., Yazdi-Samadi, B., Mozaffari, J., & Jafar-Aghaei, M. (2004). Evaluation of salt tolerance of Iranian wheat cultivars at germination and seedling stages. Iranian Journal of Agricultural Sciences, 35(2), 453–464.

    Google Scholar 

  15. Ghavami, F., Malboobi, M. A., Ghannadha, M. R., Lohrasebi, T., Yazdi-Samadi, B., Mozaffari, J., et al. (2006). Up-regulation of succinate dehydrogenase and prophobilinogen deaminase in response to high salt concentration in wheat. Iranian Journal of Agricultural Sciences, 36(6), 1437–1444.

    CAS  Google Scholar 

  16. Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499.

    Article  CAS  Google Scholar 

  17. Hernandez, J. A., Olmos, E., Corpas, F. J., Sevilla, F., & Del-Rio, L. A. (1995). Salt-induced oxidative stress in chloroplasts of pea plants. Plant Science, 105, 151–167.

    Article  CAS  Google Scholar 

  18. Horie, T., & Schroeder, J. I. (2004). Sodium transporters in plants diverse genes and physiological functions. Plant Physiology, 136, 2457–2462.

    Article  CAS  Google Scholar 

  19. Horie, T., Hauser, F., & Schroeder, J. I. (2009). HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science, 14, 660–668.

    Article  CAS  Google Scholar 

  20. Jain, M., Nijhawan, A., Tyagi, A. K., & Khurana, J. P. (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research, 345, 646–651.

    Article  CAS  Google Scholar 

  21. Kamkar, B., Kafi, M., Nassiri-Mahallati, M. (2004). Determination of the most sensitive developmental period of wheat (Triticum aestivum) to salt stress to optimize saline water utilization. Australian Agronomy Conference. 2004, 12th AAC, 4th ICSC.

  22. Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., et al. (2001). Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 13, 889–905.

    CAS  Google Scholar 

  23. Kerepesi, I., & Galiba, G. (2000). Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 40, 482–487.

    Article  CAS  Google Scholar 

  24. Larionov, A., Krause, A., & Miller, W. (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinform, 6, 62. doi:10.1186/1471-2105-6-62.

    Article  Google Scholar 

  25. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  26. Martínez-Atíenza, J., Jiang, X. Y., Garciadeblás, B., Mendoza, I., Zhu, J.-K., Pardo, J. M., et al. (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiology, 143, 1001–1012.

    Article  Google Scholar 

  27. Maughan, P. J., Turner, T. B., Coleman, C. E., Elzinga, D. B., Jellen, E. N., Morales, J. A., et al. (2009). Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd). Genome, 52(7), 647–657.

    Article  CAS  Google Scholar 

  28. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  Google Scholar 

  29. Munns, R. (2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167, 645–663.

    Article  CAS  Google Scholar 

  30. Nicot, N., Hausman, J. F., Hoffmann, L., & Evers, D. (2005). Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. The Journal of Experimental Botany, 56, 2907–2914.

    Article  CAS  Google Scholar 

  31. Niu, X., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiology, 109, 735–742.

    CAS  Google Scholar 

  32. Ralevic, V., & Burnstock, G. (1998). Receptors for purines and pyrimidines. Pharmacological Reviews, 50, 413–492.

    CAS  Google Scholar 

  33. Sanders, D. (2000). Plant biology: The salty tale of Arabidopsis. Current Biology, 10, 486–488.

    Article  Google Scholar 

  34. Shi, H., & Zhu, J. K. (2002). SOS 4 , a pyridoxal kinase gene, is required for root hair development in Arabidopsis. Plant Physiology, 129, 585–593.

    Article  CAS  Google Scholar 

  35. Shi, H., Lining, X., Becky, S., Tiegang, L., & Zhu, J. K. (2002). The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. The Plant Cell, 14, 575–588.

    Article  CAS  Google Scholar 

  36. Shi, H., Ishitani, M., Kim, C., & Zhu, J. K. (2000). The Arabidopsis thaliana salt tolerance gene SOS 1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America, 97, 6896–6901.

    Article  CAS  Google Scholar 

  37. Subbarao, G. V., & Johansen, C. (2003). Strategies and scope for improving salinity tolerance in crop plants. In M. Pessaraki (Ed.), Hand book of plant and crop stress (pp. 1069–1087). New York: Marcel Dekker Inc.

    Google Scholar 

  38. Wagdy, A. S., & Ali, H. H. (2002). Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnology Letters, 24, 721–725.

    Article  Google Scholar 

  39. Xu, H. X., Jiang, X. Y., Zhan, K. H., Cheng, X. Y., Chen, X. J., Pardo, J. M., et al. (2008). Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Archives of Biochemistry and Biophysics, 473, 8–15.

    Article  CAS  Google Scholar 

  40. Yokoi, S., Bressan, R. A., & Hasegawa, P. M. (2002). Salt stress tolerance of plants. JIRCAS Working Report, pp. 25–33.

  41. Zhu, J. K. (2000). Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology, 124, 941–948.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Niazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramezani, A., Niazi, A., Abolimoghadam, A.A. et al. Quantitative Expression Analysis of TaSOS1 and TaSOS4 Genes in Cultivated and Wild Wheat Plants Under Salt Stress. Mol Biotechnol 53, 189–197 (2013). https://doi.org/10.1007/s12033-012-9513-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9513-z

Keywords

Navigation