Skip to main content

Advertisement

Log in

Intraspecific Differentiation of Colletotrichum gloeosporioides sensu lato Based on In Silico Multilocus PCR-RFLP Fingerprinting

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Colletotrichum gloeosporioides sensu lato is one of the most common and widely distributed plant pathogens in the world. Understanding fungal biodiversity is hinged on accurate identification and delimitation at the inter- and intraspecific levels. Sequences of the ITS1-5.8S-ITS2 region (ITS), β-tubulin (TUB), actin (ACT), and glyceraldehyde-3-phosphate dehydrogenase (GPDH) genes of 30 C. gloeosporioides sensu lato isolates, collected from anthracnose infected papaya fruits grown in the main production areas in Trinidad, were analyzed by in silico PCR-RFLP analysis with the aim of identifying which gene region(s) had the highest level of intraspecific polymorphism. Restriction site polymorphisms generated from 13 restriction enzymes enabled the identification of specific enzymes that were successful at intraspecific discrimination of the C. gloeosporioides isolates. Genetic distance values were reflective of the level of polymorphisms obtained for the four different gene regions. In both cases (calculated genetic distance and percentage of polymorphic loci from RFLP profiles), ACT and ITS gene regions had the highest level of restriction site polymorphisms and genetic diversity, GPDH and TUB had the lowest. Cluster analysis based on PCR-RFLP genetic distance data revealed sub-specific placement of the isolates which appeared to be gene-dependent. The implications of these findings are discussed relative to biodiversity monitoring and the need for multilocus, polyphasic investigations which must take into account the possibility of exaggerated estimates of genetic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sutton, B. C. (1992). The genus Glomerella and its anamorph Colletotrichum. In J. A. Bailey & J. J. Jeger (Eds.), Colletotrichum: Biology, pathology and control (pp. 1–26). Wallingford, UK: CAB International.

    Google Scholar 

  2. Cannon, P. F., Bridge, P. D., & Monte, E. (2000). Linking the past, present and future of Colletotrichum systematics. In D. Prusky, S. Freeman, & M. B. Dickman (Eds.), Colletotrichum. Host specificity, pathology, and host-pathogen interaction (pp. 1–20). St Paul, USA: APS Press.

    Google Scholar 

  3. Cannon, P. F., Buddie, A. G., & Bridge, P. D. (2008). The typification of Colletotrichum gloeosporioides. Mycotaxon, 104, 189–204.

    Google Scholar 

  4. Prusky, D., & Plumbley, R. A. (1992). Quiescent infections of Colletotrichum in tropical and subtropical fruits. In J. A. Bailey & M. J. Jeger (Eds.), Colletotrichum: Biology, pathology and control (pp. 289–307). Wallingford, UK: CAB International.

    Google Scholar 

  5. Rampersad, S. N. (2011). Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease of papaya in Trinidad. Plant Disease, 95, 1244–1254.

    Article  Google Scholar 

  6. Damm, U., Baroncelli, R., Cai, L., et al. (2010). Colletotrichum: Species, ecology and interactions. IMA Fungus, 1, 161–165.

    Article  Google Scholar 

  7. Moriwaki, J., Tsukiboshi, T., & Sato, T. (2002). Grouping of Colletotrichum species in Japan based on rDNA sequences. Journal of General Plant Pathology, 68, 307–320.

    Article  CAS  Google Scholar 

  8. Lubbe, C. M., Denman, S., Cannon, P. F., et al. (2004). Characterization of Colletotrichum gloeosporioides and similar species associated with anthracnose and dieback of Proteaceae. Mycologia, 96, 1268–1279.

    Article  Google Scholar 

  9. Sreenivasaprasad, S., Mills, P. R., Meehan, B. M., et al. (1996). Phylogeny and systematics of 18 Colletotrichum species based on ribosomal DNA spacer sequences. Genome, 39, 499–512.

    Article  CAS  Google Scholar 

  10. Guarro, J., Gené, J., & Stchigel, A. M. (1999). Developments in fungal taxonomy. Clinical Microbiology Reviews, 12, 454–500.

    CAS  Google Scholar 

  11. Taylor, J. W., Jacobson, D. J., Kroken, S., et al. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology, 31, 21–32.

    Article  CAS  Google Scholar 

  12. Schadt, C. W., Martin, A. P., Lipson, D. A., et al. (2003). Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science, 301, 1359–1361.

    Article  CAS  Google Scholar 

  13. Cai, L., Hyde, K. D., Taylor, P. W. J., et al. (2009). A polyphasic approach for studying Colletotrichum. Fungal Diversity, 39, 183–204.

    Google Scholar 

  14. Kwok, P.-Y., & Chen, X. (2005). Detection of single nucleotide polymorphisms. Current Issues in Molecular Biology, 5, 43–60.

    Google Scholar 

  15. Bridge, P. D., Roberts, P. J., Spooner, B. M., et al. (2003). On the unreliability of published DNA sequences. New Phytologist, 160, 43–48.

    Article  CAS  Google Scholar 

  16. O’Donnell, K., Sutton, D. A., Rinaldi, M. G., et al. (2010). Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. Journal of Clinical Microbiology, 48, 3708–3718.

    Article  Google Scholar 

  17. Frisvad, J. C., & Samson, R. A. (2004). Polyphasic taxonomy of Penicillium subgenus Penicillium: A guide to identification of food and air-borne terverticillate penicillia and their mycotoxins. Studies in Mycology, 49, 1–174.

    Google Scholar 

  18. Chen, S., Yao, H., Han, J., Liu, C., Song, J., et al. (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE, 5, e8613.

    Article  Google Scholar 

  19. Bruns, T. D., & Shefferson, R. P. (2004). Evolutionary studies of ectomycorrhizal fungi: Recent advance and future directions. Canadian Journal of Botany, 82, 1122–1132.

    Article  CAS  Google Scholar 

  20. Gardner, S. N. & Wagner, M. C. (2005). Software for optimization of SNP and PCR-RFLP genotyping to discriminate many genomes with the fewest assays. BMC Genomics. doi:10.1186/1471-2164-6-73.

  21. Freeman, S., Minz, D., Jurkevitch, E., et al. (2000). Molecular analyses of Colletotrichum species from almond and other fruits. Phytopathology, 90, 608–614.

    Article  CAS  Google Scholar 

  22. Rolshausen, P. E., Trouillas, F., & Gubler, W. D. (2004). Identification of Eutypa lata by PCR-RFLP. Plant Disease, 88, 925–929.

    Article  CAS  Google Scholar 

  23. Maharaj, A., & Rampersad, S. N. (2011). Genetic differentiation of Colletotrichum gloeosporioides and C. truncatum associated with anthracnose disease of papaya (Carica papaya L.) and bell pepper (Capsium annuum L.) based on ITS PCR-RFLP fingerprinting. Molecular Biotechnology. doi 10.1007/s12033-011-9434-2.

  24. Rossman, A. (2007). Report of the planning workshop for All Fungi DNA barcoding. Inoculum, 58, 1–5.

    Google Scholar 

  25. Wei, W., Davis, R. E., Lee, I.-M., et al. (2007). Computer-simulated RFLP analysis of 16S rRNA genes: Identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology, 57, 1855–1867.

    Article  CAS  Google Scholar 

  26. Cai, H., Wei, W., Davis, R. E., et al. (2008). Genetic diversity among phytoplasmas infecting Opuntia species: Virtual RFLP analysis identifies new subgroups in the peanut witches’-broom phytoplasma group. International Journal of Systematic and Evolutionary Microbiology, 58, 1448–1457.

    Article  CAS  Google Scholar 

  27. Mills, P. R., Sreenivasaprasad, S., & Brown, A. E. (1992). Detection and differentiation of Colletotrichum gloeosporioides isolates using PCR. FEMS Microbiology Letters, 98, 137–144.

    Article  CAS  Google Scholar 

  28. White, T. J., Bruns, T., Lee, S., et al. (1990). PCR protocols: A guide to methods and applications. New York: Academic Press Inc.

    Google Scholar 

  29. Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.

    CAS  Google Scholar 

  30. Prihastuti, H., Cai, L., Chen, H., et al. (2009). Characterization of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Diversity, 39, 89–109.

    Google Scholar 

  31. Vincze, T., Posfai, J., & Roberts, R. J. (2003). NEBcutter: A program to cleave DNA with restriction enzymes. Nucleic Acids Research, 31, 3688–3691.

    Article  CAS  Google Scholar 

  32. Peakall, R., & Smouse, P. E. (2006). Genalex 6: Genetic analysis in Excel-Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288–295.

    Article  Google Scholar 

  33. Tamura, K., Dudley, J., Nei, M., et al. (2007). MEGA5: Molecular evolutionary genetic analysis (MEGA) software version 5.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  34. Huff, D. R., Peakall, R., & Smouse, P. E. (1993). RAPD variation within and among natural populations of outcrossing buffalograss Buchloe dactyloides (Nutt) Engelm. Theoretical and Applied Genetics, 86, 927–934.

    Article  CAS  Google Scholar 

  35. Nei, M. (1973). Analysis of genetic diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 70, 3321–3323.

    Article  CAS  Google Scholar 

  36. Sreenivasaprasad, S., Mills, P. R., & Brown, A. E. (1993). Coffee berry disease pathogen in Africa: Genetic structure and relationship to the group species Colletotrichum gloeosporioides. Mycological Research, 97, 995–1000.

    Article  Google Scholar 

  37. Rojas, E. I., Rehner, S. A., Samuels, G. J., et al. (2010). Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panamá: Multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia, 102, 1318–1338.

    Article  Google Scholar 

  38. Roe, A. D., & Sperling, F. A. H. (2007). Population structure and species boundary delimitation of cryptic Dioryctria moths: An integrative approach. Molecular Ecology, 16, 3617–3633.

    Article  CAS  Google Scholar 

  39. Bickford, D., Lohman, D. J., Sohdi, N. S., et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148–155.

    Article  Google Scholar 

  40. Bruns, T. D., White, T. J., & Taylor, J. W. (1991). Fungal molecular systematics. Annual Review of Ecology and Systematics, 22, 525–564.

    Article  Google Scholar 

  41. Seifert, K. A. (2009). Progress towards DNA barcoding of fungi. Molecular Ecology Resources, 9, 83–89.

    Article  CAS  Google Scholar 

  42. Liu, J.-S., & Schardl, C. L. (1994). A conserved sequence in internal transcribed spacer 1 of plant nuclear rRNA genes. Plant Molecular Biology, 26, 775–778.

    Article  CAS  Google Scholar 

  43. O’Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7, 103–116.

    Article  Google Scholar 

  44. Vilgalys, D., & Gonzalez, D. (1990). Organization of ribosomal DNA in the basidiomycete Thanatephorus praticola. Current Genetics, 18, 277–280.

    Article  CAS  Google Scholar 

  45. Koch, M. A., Dobeš, C., & Mitchell-Olds, T. (2003). Hybrid formation in natural populations: Concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Molecular Biology and Evolution, 20, 338–350.

    Article  CAS  Google Scholar 

  46. Corradi, N., Croll, D., Colard, A., et al. (2007). Gene copy number polymorphisms in an arbuscular mycorrhizal fungal population. Applied and Environmental Microbiology, 73, 366–369.

    Article  CAS  Google Scholar 

  47. Dickie, I. A., & Fitzjohn, R. G. (2007). Using terminal restriction fragment length polymorphism (TRFLP) to identify mycorrhizal fungi: A methods review. Mycorrhiza, 17, 259–270.

    Article  CAS  Google Scholar 

  48. Avis, P. G., Dickie, I. A., & Mueller, M. (2006). A ‘dirty’ business: Testing the limitations of terminal restriction fragment length polymorphism (TRFLP) analysis of soil fungi. Molecular Ecology, 15, 873–882.

    Article  CAS  Google Scholar 

  49. Turbett, G. V., & Sellner, L. N. (1996). Digestion of PCR and RT-PCR products with restriction endonucleases without prior purification or precipitation. Promega Notes, 60, 23–27.

    Google Scholar 

Download references

Acknowledgments

This study was funded by the University of the West Indies, St. Augustine Campus Research and Publications Grant (Grant No. CRP.3.NOV11.8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sephra N. Rampersad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramdeen, S., Rampersad, S.N. Intraspecific Differentiation of Colletotrichum gloeosporioides sensu lato Based on In Silico Multilocus PCR-RFLP Fingerprinting. Mol Biotechnol 53, 170–181 (2013). https://doi.org/10.1007/s12033-012-9509-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9509-8

Keywords

Navigation