Skip to main content

Advertisement

Log in

Combined Proteomic and Molecular Approaches for Cloning and Characterization of Copper–Zinc Superoxide dismutase (Cu, Zn-SOD2) from Garlic (Allium sativum)

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Superoxide dismutases (SODs; EC 1.15.1.1) are key enzymes in the cells protection against oxidant agents. Thus, SODs play a major role in the protection of aerobic organisms against oxygen-mediated damages. Three SOD isoforms were previously identified by zymogram staining from Allium sativum bulbs. The purified Cu, Zn-SOD2 shows an antagonist effect to an anticancer drug and alleviate cytotoxicity inside tumor cells lines B16F0 (mouse melanoma cells) and PAE (porcine aortic endothelial cells). To extend the characterization of Allium SODs and their corresponding genes, a proteomic approach was applied involving two-dimensional gel electrophoresis and LC–MS/MS analyses. From peptide sequence data obtained by mass spectrometry and sequences homologies, primers were defined and a cDNA fragment of 456 bp was amplified by RT-PCR. The cDNA nucleotide sequence analysis revealed an open reading frame coding for 152 residues. The deduced amino acid sequence showed high identity (82–87%) with sequences of Cu, Zn-SODs from other plant species. Molecular analysis was achieved by a protein 3D structural model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Hernández, J. A., Olmos, E., Corpas, F. J., Sevilla, F., & Del Rio, L. A. (1995). Salt induced oxidative stress in chloroplast of pea plants. Plant Science, 105, 151–167.

    Article  Google Scholar 

  2. Foyer, C. H., & Noctor, G. (2000). Oxygen processing in photosynthesis: Regulation and signaling. New Phytologist, 14, 6359–6388.

    Google Scholar 

  3. Anderson, J. A. (2002). Catalase activity, hydrogen peroxide content and thermotolerance of pepper leaves. Scientia Horticulturae, 95, 277–284.

    Article  CAS  Google Scholar 

  4. Foyer, C. H., Descourvières, P., & Kunert, K. J. (1994). Protein against oxygen radicals: An important defence mechanism studied in transgenic plants. Plant, Cell & Environment, 17, 507–523.

    Article  CAS  Google Scholar 

  5. Smirnoff, N. (1998). Plant resistance to environmental stress. Current Opinion in Biotechnology, 9, 214–219.

    Article  CAS  Google Scholar 

  6. Kuzniak, E., & Skodowska, M. (2004). The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves. Journal of Experimental Botany, 55, 605–612.

    Article  CAS  Google Scholar 

  7. Sakamoto, A., Ohsuga, H., & Tanaka, K. (1992). Nucleotide sequences of two cDNA clones encoding different Cu/Zn superoxide dismutases expressed in developing rice seed. Plant Molecular Biology, 19, 323–327.

    Article  CAS  Google Scholar 

  8. Pagani, S., Colnaghi, R., Palag, A., & Negri, A. (1995). Purification and characterization of an iron superoxide dismutase from the nitrogen-fixing Azotobacter vinelandii. FEBS Letters, 35, 779–782.

    Google Scholar 

  9. Bannister, J. V., Bannister, W. H., & Rotilio, G. (1987). Aspects of the structure, function and applications of superoxide dismutase. CRC Critical Reviews in Biochemistry, 22, 111–180.

    Article  CAS  Google Scholar 

  10. Weydert, C. J., Waugh, T. A., Ritchie, J. M., Kanchan, S. I., Smith, J. L., & Li, L. (2006). Overexpression of manganese or copper–zinc superoxide dismutase inhibits breast cancer growth. Free Radical Biology and Medicine, 41, 226–237.

    Article  CAS  Google Scholar 

  11. Zhang, Y., Zhao, W., Zhang, H. J., Domann, F. E., & Oberley, L. W. (2002). Overexpression of copper zinc superoxide dismutase suppresses human glioma cell growth. Cancer Research, 62, 1205–1212.

    CAS  Google Scholar 

  12. Kondo, T., Terajima, H., Todoroki, T., Hirano, T., Ito, Y., Usia, T., et al. (1999). Prevention of hepatic ischemia-reperfusion injury by SOD-DIVEMA conjugate. Journal of Surgical Research, 85, 26–36.

    Article  CAS  Google Scholar 

  13. Muzykantov, V. R. (2001). Targeting of superoxide dismutase and catalase to vascular endothelium. Journal of Controlled Release, 71, 1–21.

    Article  CAS  Google Scholar 

  14. Yoo, H. Y., Kim, S. S., & Rho, H. M. (1999). Overexpression and simple purification of human superoxide dismutase (SOD1) in yeast and its resistance to oxidative stress. Journal of Biotechnology, 68, 29–35.

    Article  CAS  Google Scholar 

  15. McKersie, B. D., Bowley, S. R., Harjanto, E., & Leprince, O. (1996). Water-deficit tolerance and field performance of transgenic alfalfa overexpression superoxide dismutase. Plant Physiology, 111, 1177–1181.

    CAS  Google Scholar 

  16. Gill, T., Sreenivasulu, Y., Kumar, S., & Ahuja, P. S. (2010). Over-expression of superoxide dismutase exhibits lignifications of vascular structure in Arabidopsis thaliana. Journal of Plant Physiology, 167, 757–760.

    Article  CAS  Google Scholar 

  17. Alsher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutase (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53, 1131–1141.

    Article  Google Scholar 

  18. Yogavel, M., Gill, J., Mishra, P. C., & Sharma, A. (2007). SAD Phasing of a structure based on cocrystallized iodides using an in-house Cu Kalpha X-ray source: Effects of data redundancy and completeness on structure solution. Acta Crystallographica D, 63, 931–934.

    Article  Google Scholar 

  19. Bowler, C., Aliotte, T., De Loose, M., Van Montagu, M., & Inze, D. (1989). The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO Journal, 8, 31–38.

    CAS  Google Scholar 

  20. Perl-Treves, R., & Galun, E. (1991). The tomato Cu/Zn superoxide dismutase genes are developmentally regulated and respond to light and stress. Plant Molecular Biology, 17, 745–760.

    Article  CAS  Google Scholar 

  21. Cannon, R. E., & Scandalios, J. G. (1989). Two cDNAs encode two nearly identical Cu/Zn superoxide dismutase proteins in maize. Molecular and General Genetics, 219, 1–8.

    CAS  Google Scholar 

  22. Akkapeddi, A. S., Shin, D. I., Stanek, M. T., Karnosky, D. F., & Podila, G. K. (1994). cDNA and derived amino acid sequence of the chloroplastic copper/zinc-superoxide dismutase from aspen (Poplus tremuloides). Plant Physiology, 106, 1231–1232.

    Article  CAS  Google Scholar 

  23. Xie, X. Q., Ying, S. H., & Feng, M. G. (2010). Characterization of a new Cu/Zn-superoxide dismutase from Beauveria bassiana and two site-directed mutations crucial to its antioxidation activity without chaperon. Enzyme and Microbial Technology, 46, 217–222.

    Article  CAS  Google Scholar 

  24. Hadji Sfaxi, I., Ferraro, D., Fasano, E., Pani, G., Limam, F., & Marzouki, M. N. (2009). Effects of a manganese superoxide dismutase purified from Allium sativum on tumoral cell culture. Biotechnology Progress, 25, 257–264.

    Article  Google Scholar 

  25. Hadji, I., Marzouki, M. N., Ferraro, D., Fasano, E., Majdoub, H., Pani, G., et al. (2007). Purification and characterization of a Cu, Zn-SOD from garlic (Allium sativum L.). Antioxidant effect on tumoral cell lines. Applied Biochemistry and Biotechnology, 143, 129–141.

    Article  CAS  Google Scholar 

  26. Oberley, L. W. (1982). Superoxide dismutase and cancer. In L. W. Oberley (Ed.), Superoxide dismutase, Vol. 2 (pp. 127–165). Boca Raton, FL: CRC Press.

    Google Scholar 

  27. Mossman, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxic assays. Journal of Immunological Methods, 65, 55–63.

    Article  Google Scholar 

  28. Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in autoxidation of epinephrine and a simple assay for SOD. Journal of Biological Chemistry, 247, 3170–3175.

    CAS  Google Scholar 

  29. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  30. Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  CAS  Google Scholar 

  31. Rabillaud, T., Valette, C., & Lawrence, J. J. (1994). Sample application by in-gel rehydration improves the resolution of two-dimensional electrophoresis with immobilized pH gradients in the first dimension. Electrophoresis, 15, 1552–1558.

    Article  Google Scholar 

  32. Coquet, L., Vilain, S., Cosette, P., Jouenne, T., & Junter, G. A. (2006). A proteomic approach of biofilm cell physiology. In J. M. Guisan (Ed.), Methods in biotechnology: Immobilization of enzymes and cells, 3rd ed. (pp. 403–414). Totowa, NJ: Humana.

    Chapter  Google Scholar 

  33. Sambrook, J., & Russel, D. W. (2001). Molecular cloning: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  34. Expasy Swiss Prot Web Server (http://www.expasy.ch).

  35. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI BLAST: A new generation of protein database search programs. Nucleic Acid Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  36. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A., & Wheeler, D. L. (2006). GeneBank. Nucleic Acid Research, 32, 23–26.

    Article  Google Scholar 

  37. Swiss-Model program (http://swissmodel.expasy.org/).

  38. PyMOL version 1.4.1 (www.Pymol.org/).

  39. Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.

    Article  CAS  Google Scholar 

  40. Kalyanaraman, B., Perez-Reyes, E., & Mason, R. P. (1980). Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs. Biochimica et Biophysica Acta, 630, 119–123.

    Article  CAS  Google Scholar 

  41. Halliwell, B., & Gutteridge, J. M. C. (1989). Free radicals in biology and medicine, 2nd ed. (p. 543). New York: Oxford University Press.

    Google Scholar 

  42. Oberley, L. W., & Oberley, T. D. (1986). Free radicals, cancer, and aging. In J. E. Johnson Jr., R. Walford, D. Harmon, & J. Miquel (Eds.), Free radicals, aging, and degenerative diseases (pp. 325–381). New York: Alan R, Liss Inc.

    Google Scholar 

  43. Tsidale, M. J., & Mahmoud, M. B. (1983). Activities of free radical metabolizing enzymes in tumours. British Journal of Cancer, 47, 809–812.

    Article  Google Scholar 

  44. Brockhaus, F., & Brune, B. (1999). Overexpression of CuZn superoxide dismutase protects RAW 264.7 macrophages against nitric oxide cytotoxicity. Biochemical Journal, 338, 295–303.

    Article  CAS  Google Scholar 

  45. Hirose, K., Longo, D. L., Oppenhaim, J. J., & Matsushima, K. (1993). Over-expression of mitochondrial manganese superoxide dismutase promotes the survival of tumor cells exposed to interleukin 1, tumor necrosis factor, selected anticancer drugs and ionizing radiation. FASEB Journal, 7, 3361–3368.

    Google Scholar 

  46. Guo, H. L., Wolfe, D., Epperly, M. W., et al. (2003). Gene transfer of human manganese superoxide dismutase protects small intestinal villi from radiation injury. Journal of Gastrointestinal Surgery, 7, 229–235.

    Article  Google Scholar 

  47. Yen, H. C., Oberley, T. D., Vichitbandha, S., Ho, Y. S., & St Clair, D. K. (1996). The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. Journal of Clinical Investigation, 98, 1253–1260.

    Article  CAS  Google Scholar 

  48. Karpinska, B., Karlsson, M., Schinkel, H., Streller, S., Suss, K. H., Melzer, M., et al. (2001). A novel superoxide dismutase with a high isoelectric point in higher plants. Expression, regulation and protein localization. Plant Physiology, 126, 1668–1677.

    Article  CAS  Google Scholar 

  49. Rodrıguez-Serrano, M., Romero-Puertas, M. C., Pastori, G. M., Corpas, F. J., Sandalio, L. M., del Rıo, L. A., et al. (2007). Peroxisomal membrane manganese superoxide dismutase: Characterization of the isozyme from watermelon (Citrullus lanatus Schrad.) cotyledons. Journal of Experimental Botany, 58, 2417–2427.

    Article  Google Scholar 

  50. Kwon, S. I., & An, C. S. (1999). Isolation and characterization of mitochondrial manganese superoxide dismutase (MnSOD) from Capsicum annuum L. Molecules and Cells, 31, 625–630.

    Google Scholar 

  51. Vyas, D., & Kumar, S. (2005). Purification and partial characterization of a low temperature responsive Mn-SOD from tea (Camellia sinensis L.). Biochemical and Biophysical Research Communications, 15, 831–838.

    Article  Google Scholar 

  52. Murai, R., & Murai, K. (1996). Different transcriptional regulation of cytosolic and plastidic Cu/Zn-superoxide dismutase genes in Solidago altissima (Asteraceae). Journal of Plant Sciences, 120, 71–79.

    Article  CAS  Google Scholar 

  53. Liu, W., Zhu, R. H., Li, G. P., & Da-Cheng, W. (2002). cDNA cloning, high-level expression, purification and characterization of an avian Cu, Zn superoxide dismutase from Peking duck. Protein Expression and Purification, 25, 379–388.

    Article  CAS  Google Scholar 

  54. Shin, S. Y., Lee, H. S., Kwon, S. Y., Kwon, S. T., & Kwak, S. S. (2005). Molecular characterization of a cDNA encoding copper/zinc superoxide dismutase from cultured cells of Manihot esculenta. Plant Physiology and Biochemistry, 43, 55–60.

    Article  CAS  Google Scholar 

  55. Lu, L. M., Qin, M. L., Lan, H. H., Wang, P., Niu, X. Q., Wu, Z. J. & Xie, L. H. (2007) Construction and characterization of a yeast two-hybrid cDNA library from rice seedling leaves. Agriculture and Forestry University, Fuzhou, Fujian, China: Plant Protection, Plant Virology.

  56. Gardiner, J., Schroeder, S., Polacco, M. L., Sanchez-Villeda, H., Fang, Z., Morgante, M., et al. (2004). Anchoring 9,371 maize expressed sequence tagged unigenes to the bacterial artificial chromosome contig map by two-dimensional overgo hybridization. Plant Physiology, 134, 1317–1326.

    Article  Google Scholar 

  57. Getzoff, E. D., Tainer, J. A., Stempien, M. M., Bell, G. I., & Hallewell, R. A. (1989). Evolution of Cu, Zn superoxide dismutase and the Greek key b-barrel structural motif. Proteins: Structure, Function, and Bioinformatics, 5, 322–336.

    Article  CAS  Google Scholar 

  58. Hayward, L. J., Rodriguez, J. A., Kim, J. W., Tiwari, A., Goto, J. J., Cabelli, D. E., et al. (2002). Decreased metallation and activity in subsets of mutant superoxide dismutases associated with familial amyotrophic lateral sclerosis. Journal of Biological Chemistry, 277, 15923–15931.

    Article  CAS  Google Scholar 

  59. Rodriguez, J. A., Shaw, B. F., Durazo, A., Sohn, S. H., Doucette, P. A., Nersissian, A. M., et al. (2005). Destabilization of apoprotein is insufficient to explain Cu, Zn-superoxide dismutase-linked ALS pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 10516–10521.

    Article  CAS  Google Scholar 

  60. Kumar, S., Sahoo, R. & Ahuja, P. S. (2002). Isozyme of autoclavable superoxide dismutase (SOD), a process for the identification and extraction of the SOD in cosmetic, food and pharmaceutical compositions. United States Patent 6,485,950.

    Google Scholar 

Download references

Acknowledgments

This study was sustained by a financial support of the Bioengineering Laboratory 99UR09-26 (INSAT) from the Tunisian Ministry of High Education Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Hadji Sfaxi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadji Sfaxi, I., Ezzine, A., Coquet, L. et al. Combined Proteomic and Molecular Approaches for Cloning and Characterization of Copper–Zinc Superoxide dismutase (Cu, Zn-SOD2) from Garlic (Allium sativum). Mol Biotechnol 52, 49–58 (2012). https://doi.org/10.1007/s12033-011-9473-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9473-8

Keywords