Skip to main content
Log in

A Novel Method to Produce Immobilised Biomolecular Concentration Gradients to Study Cell Activities: Design and Modelling

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

It is well known that many cell functions are activated by chemical signals with a time and space-dependent profile. To mimic these profiles in vitro, it is necessary to develop a system that is able to generate concentration gradients with a resolution similar to that perceived by cells, which is around nanomolar with a spatial resolution of a few tens of microns. Many devices capable of generating steady-state concentration gradients have been developed using continuous flow micro-fluidic techniques. However, these systems cannot reproduce the immobilised concentration gradients that are present in the extracellular matrix. For this reason, we have developed a new gradient generator to enable precise and reproducible studies on the effects of immobilised concentration gradients on cell behaviour. A well-known gradient of a desired molecule was generated on the bottom surface of a hydrogel, which was then used as a stamp to immobilise the molecule on a functionalised substrate. A concentration gradient was thus obtained using a simple silane-based chemical reaction. To validate the method, image analysis was performed on glass slides printed with fluorescein isothiocyanate (FITC)- collagen and FITC-poly-lysine concentration gradients. Preliminary cell adhesion tests were also carried out by seeding NIH-3T3 and mesencephalic cells on lab-glass slides printed with concentration profiles of collagen and poly-lysine, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tsikolia, N. (2003). What is a role of the morphogens gradients in development? Rivista di Biologia, 96(2), 293–315. Review.

    Google Scholar 

  2. Tofts, P. S., & Wray, S. (1988). A critical assessment of methods of measuring metabolite concentrations by NMR spectroscopy. NMR in Biomedicine, 1(1), 1–10. Review.

    Article  CAS  Google Scholar 

  3. Jungermann, K., & Thurman, R. G. (1992). Hepatocyte heterogeneity in the metabolism of carbohydrates. Enzyme, 46(1–3), 33–58. Review.

    CAS  Google Scholar 

  4. Soon, L. L. (2007). A discourse on cancer cell chemotaxis: where to from here? IUBMB Life, 59(2), 60–67. Review.

    Article  CAS  Google Scholar 

  5. Singh, M., Berkland, C., & Detamore, M. S. (2008). Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering. Tissue Engineering, Part B: Reviews, 14(4), 341–366. Review.

    Article  CAS  Google Scholar 

  6. Gregor, T., Tank, D. W., Wieschaus, E. F., & Bialek, W. (2007). Probing the limits to positional information. Cell, 130(1), 153–164.

    Article  CAS  Google Scholar 

  7. Lin, F., Saadi, W., Rhee, S. W., Wang, S. J., Mittal, S., & Jeon, N. L. (2004). Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab Chip, 4(3), 164–167.

    Article  CAS  Google Scholar 

  8. Walker, G. M., Sai, J., Richmond, A., Stremler, M., Chung, C. Y., & Wikswo, J. P. (2005). Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip, 5(6), 611–618.

    Article  CAS  Google Scholar 

  9. Irimia, D., Geba, D. A., & Toner, M. (2006). Universal microfluidic gradient generator. Analytical Chemistry, 78(10), 3472–3477.

    Article  CAS  Google Scholar 

  10. Cheng, J. Y., Yen, M. H., Kuo, C. T., & Young, T. H. (2008). A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier. Biomicrofluidics, 2(2), 24105.

    Article  Google Scholar 

  11. Kang, T., Han, J., & Lee, K. S. (2008). Concentration gradient generator using a convective-diffusive balance. Lab Chip, 8(7), 1220–1222.

    Article  CAS  Google Scholar 

  12. Zhou, Y., Wang, Y., Mukherjee, T., & Lin, Q. (2009). Generation of complex concentration profiles by partial diffusive mixing in multi-stream laminar flow. Lab Chip, 9(10), 1439–1448.

    Article  CAS  Google Scholar 

  13. Toh, Y. C., Lim, T. C., Tai, D., Xiao, G., van Noort, D., & Yu, H. (2009). A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip, 9(14), 2026–2035.

    Article  CAS  Google Scholar 

  14. Glawdel, T., Elbuken, C., Lee, L. E., & Ren, C. L. (2009). Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)-towards water toxicity testing. Lab Chip, 9(22), 3243–3250.

    Article  CAS  Google Scholar 

  15. Dertinger, K. W., Jiang, J., Li, Z., Murthy, V. N., & Whitesides, G. M. (2002). Gradients of substrate-bound laminin orient axonal specifications of neurons. PNAS, 99(20), 12542–12547.

    Article  CAS  Google Scholar 

  16. Jiang, X., Ng, J. M. K., Dertinger, K. W., & Whitesides, G. M. (2005). A miniaturised, parallel, serially diluted immunoassays for analyzing multiple antigens. Analytical Chemistry, 77(8), 2338–2347.

    Article  CAS  Google Scholar 

  17. Ulrich, F., & Heisenberg, C. P. (2009). Trafficking and cell migration. Traffic, 10(7), 811–818. Review.

    Article  CAS  Google Scholar 

  18. Elsdale, T., & Bard, J. (1972). Collagen substrata for studies on cell behavior. Journal of Cell Biology, 54, 626.

    Article  CAS  Google Scholar 

  19. Eddowes, M. J. (1987/1988). Direct immunochemical sensing: Basic chemical principles and fundamental limitations. Biosensors, 3, 1–15.

    Article  CAS  Google Scholar 

  20. Gaudet, C., Marganski, W. A., Kim, S., Brown, C. T., Gunderia, V., Dembo, M., et al. (2003). Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. Biophysical Journal, 85(5), 3329–3335.

    Article  CAS  Google Scholar 

  21. Garrett, R. H., & Grisham, C. M. (1999). Biochemistry. Philadelphia: Saunders College Publishing.

    Google Scholar 

  22. Nam, K., Kimura, T., & Kishida, A. (2008). Controlling coupling reaction of EDC and NHS for preparation of collagen gels using ethanol/water co-solvents. Macromolecular Bioscience, 8(1), 32–37.

    Article  CAS  Google Scholar 

  23. Janorkar, A. V., Luo, N., & Hirt, D. E. (2004). Surface modification of an ethylene-acrylic acid copolymer film: grafting amine-terminated linear and branched architectures. Langmuir, 20(17), 7151–7158.

    Article  CAS  Google Scholar 

  24. Vaglini, F., Pardini, C., Maggio, R., & Corsini, G. U. (1995). Role of excitatory amino-acids in diethyldithiocarbamate-induced cell death in mesencephalic cultures. Brain Research, 674(1), 127–132.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Vozzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vozzi, G., Lenzi, T., Montemurro, F. et al. A Novel Method to Produce Immobilised Biomolecular Concentration Gradients to Study Cell Activities: Design and Modelling. Mol Biotechnol 50, 99–107 (2012). https://doi.org/10.1007/s12033-011-9411-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9411-9

Keywords

Navigation