Skip to main content

Advertisement

Log in

Isolation and Characterization of a Heme Oxygenase-1 Gene from Chinese Cabbage

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Heme oxygenase-1 (HO1) is a heme-catabolizing enzyme induced by a variety of stress conditions. This article described the cloning and characterization of BrHO1 gene which codes for a putative HO1 from Chinese cabbage (Brassica rapa subsp. pekinensis). BrHO1 consists of three exons and encodes a protein precursor of 32.3 kD with a putative N-terminal plastid transit peptide. The amino acid sequence of BrHO1 was 84% similar to Arabidopsis counterpart HY1. The three-dimensional structure of BrHO1 showed a high degree of structural conservation compared with the known HO1 crystal structures. Phylogenetic analysis revealed that BrHO1 clearly grouped with the HO1-like sequences. The recombinant BrHO1 protein expressed in Escherichia coli was active in the conversion of heme to biliverdin IXα (BV). Furthermore, the results of subcellular localization of BrHO1 demonstrated that BrHO1 gene product was most likely localized in the chloroplasts. BrHO1 was differently expressed in all tested tissues and could be induced upon osmotic and salinity stresses, cadmium (Cd) exposure, hydrogen peroxide (H2O2), and hemin treatments. Together, the results suggested that BrHO1 plays an important role in abiotic stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  Google Scholar 

  2. Stocker, R., Yamamoto, Y., McDonagh, A. F., Glazer, A. N., & Ames, B. N. (1987). Bilirubin is an antioxidant of possible physiological importance. Science, 235, 1043–1046.

    Article  CAS  Google Scholar 

  3. Llesuy, S. F., & Tomaro, M. L. (1994). Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage. Biochimica et Biophysica Acta, 1223, 9–14.

    Article  CAS  Google Scholar 

  4. Maines, M. D. (1988). Heme oxygenase: Function, multiplicity, regulatory mechanisms, and clinical applications. FASEB Journal, 2, 2557–2568.

    CAS  Google Scholar 

  5. Wilks, A., Black, S. M., Miller, W. L., & Ortiz de Montellano, P. R. (1995). Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase. Biochemistry (Moscow), 34, 4421–4427.

    Article  CAS  Google Scholar 

  6. Shekhawat, G. S., & Verma, K. (2010). Haem oxygenase (HO): An overlooked enzyme of plant metabolism and defence. Journal of Experimental Botany, 61, 2255–2270.

    Article  CAS  Google Scholar 

  7. Tomaro, M. L., & Batlle, A. M. (2002). Bilirubin: Its role in cytoprotection against oxidative stress. International Journal of Biochemistry and Cell Biology, 34, 216–220.

    Article  CAS  Google Scholar 

  8. Murray, G. L., Ellis, K. M., Lo, M., & Adler, B. (2008). Leptospira interrogans requires a functional heme oxygenase to scavenge iron from hemoglobin. Microbes and Infection, 10, 791–797.

    Article  CAS  Google Scholar 

  9. Terry, M., Linley, & P., Kohchi, T. (2002). Making light of it: The role of plant haem oxygenases in phytochrome chromophore synthesis. Biochemical Society Transactions, 30604–30609.

  10. Keyse, S. M., & Tyrrell, R. M. (1989). Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proceedings of the National Academy of Sciences of the United States of America, 86, 99–103.

    Article  CAS  Google Scholar 

  11. Vile, G. F., Basu-Modak, S., Waltner, C., & Tyrrell, R. M. (1994). Heme oxygenase 1 mediates an adaptive response to oxidative stress in human skin fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 91, 2607–2610.

    Article  CAS  Google Scholar 

  12. Han, Y., Zhang, J., Chen, X. Y., Gao, Z. Z., Xuan, W., Xu, S., et al. (2008). Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa. New Phytologist, 177, 155–166.

    CAS  Google Scholar 

  13. Cui, W. T., Fu, G. Q., Wu, H. H., & Shen, W. B. (2011). Cadmium-induced heme oxygenase-1 gene expression is associated with the depletion of glutathione in the roots of Medicago sativa. BioMetals, 24, 93–103.

    Article  CAS  Google Scholar 

  14. Yannarelli, G. G., Noriega, G. O., Batlle, A., & Tomaro, M. L. (2006). Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta, 224, 1154–1162.

    Article  CAS  Google Scholar 

  15. Balestrasse, K. B., Zilli, C. G., & Tomaro, M. L. (2008). Signal transduction pathways and haem oxygenase induction in soybean leaves subjected to salt stress. Redox Report, 13, 255–262.

    Article  CAS  Google Scholar 

  16. Xie, Y. J., Ling, T. F., Han, Y., Liu, K. L., Zheng, Q. S., Huang, L. Q., et al. (2008). Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defense in wheat seedling roots. Plant Cell Environ, 31, 1864–1881.

    Article  CAS  Google Scholar 

  17. Chen, X. Y., Ding, X., Xu, S., Wang, R., Xuan, W., Cao, Z. Y., et al. (2009). Endogenous hydrogen peroxide plays a positive role in the upregulation of heme oxygenase and acclimation to oxidative stress in wheat seedling leaves. Journal of Integrative Plant Biology, 51, 951–960.

    Article  CAS  Google Scholar 

  18. Xuan, W., Zhu, F. Y., Xu, S., Huang, B. K., Ling, T. F., Qi, J. Y., et al. (2008). The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiology, 148, 881–893.

    Article  CAS  Google Scholar 

  19. Wu, M. Z., Huang, J. J., Xu, S., Ling, T. F., Xie, Y. J., & Shen, W. B. (2011). Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism. Journal of Experimental Botany, 62, 235–248.

    Article  CAS  Google Scholar 

  20. Muramoto, T., Kohchi, T., Yokota, A., Hwang, I., & Goodman, H. M. (1999). The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. The Plant Cell, 11, 335–348.

    Article  CAS  Google Scholar 

  21. Izawa, T., Oikawa, T., Tokutomi, S., Okuno, K., & Shimamoto, K. (2000). Phytochromes confer the photoperiodic control of flowering in rice. The Plant Journal, 22, 391–399.

    Article  CAS  Google Scholar 

  22. Jaroszewski, L., Rychlewski, L., Li, Z., Li, W., & Godzik, A. (2005). FFAS03: a server for profile-profile sequence alignments. Nucleic Acids Research, 33, W284–W288.

    Article  CAS  Google Scholar 

  23. Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 779–815.

  24. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, W407–W410.

  25. Liu, K. L., Xu, S., Xuan, W., Ling, T. F., Cao, Z. Y., Huang, B., et al. (2007). Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Science, 172, 544–555.

    Article  CAS  Google Scholar 

  26. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  27. Voinnet, O., Rivas, S., Mestre, P., & Baulcombe, D. (2003). An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant Journal, 33, 949–956.

    Article  CAS  Google Scholar 

  28. Brandizzi, F., Frangne, N., Marc-Martin, S., Hawes, C., Neuhaus, J. M., & Paris, N. (2002). The destination for single-pass membrane proteins is influenced markedly by the length of the hydrophobic domain. The Plant Cell, 14, 1077–1092.

    Article  CAS  Google Scholar 

  29. Emanuelsson, O., Nielsen, H., & Von Heijne, G. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science, 8, 978–984.

    Article  CAS  Google Scholar 

  30. Matera, K. M., Zhou, H., Migita, C. T., Hobert, S. E., Ishikawa, K., Katakura, K., et al. (1997). Histidine-132 does not stabilize a distal water ligand and is not an important residue for the enzyme activity in heme oxygenase-1. Biochemistry, 36, 4909–4915.

    Article  CAS  Google Scholar 

  31. Sun, J., Loehr, T. M., Wilks, A., & Ortiz de Montellano, P. R. (1994). Identification of histidine 25 as the heme ligand in human liver heme oxygenase. Biochemistry, 33, 13734–13740.

    Article  CAS  Google Scholar 

  32. Ito-Maki, M., Ishikawa, K., Matera, K. M., Sato, M., Ikeda-Saito, M., & Yoshida, T. (1995). Demonstration that histidine-25, but not Histidine-132, is the axial heme ligand in rat heme oxygenase-1. Archives of Biochemistry and Biophysics, 317, 253–258.

    Article  CAS  Google Scholar 

  33. Wilks, A., Black, S., Miller, W., & Ortiz de Montellano, P. (1995). Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase. Biochemistry, 34, 4421–4427.

    Article  CAS  Google Scholar 

  34. Muramoto, T., Tsurui, N., Terry, M. J., Yokota, A., & Kohchi, T. (2002). Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required for phytochrome chromophore synthesis. Plant Physiology, 130, 1958–1966.

    Article  CAS  Google Scholar 

  35. Chiu, W., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., & Sheen, J. (1996). Engineered GFP as a vital reporter in plants. Current Biology, 6325–6330.

  36. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., & Gruissem, W. (2004). Arabidopsis microarray database and analysis toolbox. Journal of Experimental Botany, 136, 2621–2632.

    CAS  Google Scholar 

  37. Baudouin, E., Frendo, P., Le Gleuher, M., & Puppo, A. (2004). A Medicago sativa haem oxygenase gene is preferentially expressed in root nodules. Journal of Experimental Botany, 55, 43–47.

    Article  CAS  Google Scholar 

  38. Balestrasse, K. B., Noriega, G. O., Batlle, A., & Tomaro, M. L. (2006). Heme oxygenase activity and oxidative stress signaling in soybean leaves. Plant Science, 170, 339–346.

    Article  CAS  Google Scholar 

  39. Xie, Y. J., Xu, S., Han, B., Wu, M. Z., Yuan, X. X., Han, Y., Gu, Q., Xu, D. K., Yang, Q., & Shen, W. B. (2011). Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis, The Plant Journal. doi:10.1111/j.1365-313X.2011.04488.x.

  40. Noriega, G. O., Yannarelli, G. G., Balestrasse, K. B., Batlle, A., & Tomaro, M. L. (2007). The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. Planta, 226, 1155–1163.

    Article  CAS  Google Scholar 

  41. Fu, G. Q., Xu, S., Xie, Y. J., Han, B., Nie, L., Shen, W. B., & Wang, R. (2011). Molecular cloning, characterization, and expression of an alfalfa (Medicago sativa L.) heme oxygenase-1 gene, MsHO1, which is pro-oxidants-regulated. Plant Physiology and Biochemistry. doi:10.1016/j.plaphy.2011.01.018.

  42. Xu, S., Zhang, B., Cao, Z. Y., Ling, T. F., & Shen, W. B. (2011). Heme oxygenase is involved in cobalt chloride-induced lateral root development in tomato. BioMetals, 24, 181–191.

    Article  CAS  Google Scholar 

  43. Besson-Bard, A., Gravot, A., Richaud, P., Auroy, P., Duc, C., Gaymard, F., et al. (2009). Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiology, 149, 1302–1315.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in University (grant no. NCET-07-0441), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Education Department of Jiangsu (grant no. 200910), the Technology Support Program in Jiangsu Province, China (grant no. BE2010382), and the Fundamental Research Funds for the Central Universities (grant no. KYZ200905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Biao Shen.

Additional information

Qi-Jiang Jin and Xing-Xing Yuan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 602 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, QJ., Yuan, XX., Cui, WT. et al. Isolation and Characterization of a Heme Oxygenase-1 Gene from Chinese Cabbage. Mol Biotechnol 50, 8–17 (2012). https://doi.org/10.1007/s12033-011-9407-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9407-5

Keywords