Skip to main content
Log in

Modification and Evolution of Gluconobacter oxydans for Enhanced Growth and Biotransformation Capabilities at Low Glucose Concentration

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Gluconobacter oxydans is widely used in several biotechnological applications, where sorbitol or mannitol is commonly used as carbon source at high concentration. In this study, a membrane-bound glucose dehydrogenase-deficient strain (GDHK) was constructed to eliminate growth problems on glucose caused by direct oxidation of glucose in the medium. To achieve improved growth properties for the GDHK strain on glucose, a laboratory adaptive evolution experiment was performed with glucose as the sole carbon source. Results indicated evident, albeit modest, improvements in cell growth after a 50-day (about 430 generations) experimental evolution on glucose. The maximum specific growth rate and biomass yield of the resulting GDHE50 strain were increased around 1.35- to 1.4-fold compared with those of the GDHK strain. Meanwhile, two types of biotransformation reactions using resting cells of G. oxydans were investigated. Significant elevations in biotransformation performance of the GHDE50 strain were observed in comparison with that of the wild-type strain. In addition, resting cells of the GDHE50 strain grown on a relatively low concentration of glucose (10 g/l) could catalyze the biotransformation of glycerol to dihydroxyacetone and ethylene glycol to glycolic acid as efficient as the wild-type G. oxydans cultured on higher concentration of sorbitol or other carbon sources. These results suggest very favorable prospects of using glucose to lower production cost in many important industrial biocatalysis and biotransformation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Deppenmeier, U., & Ehrenreich, A. (2009). Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. Journal of Molecular Microbiology and Biotechnology, 16(1–2), 69–80.

    Article  CAS  Google Scholar 

  2. Adachi, O., Moonmangmee, D., Toyama, H., Yamada, M., Shinagawa, E., & Matsushita, K. (2003). New developments in oxidative fermentation. Applied Microbiology and Biotechnology, 60(6), 643–653.

    CAS  Google Scholar 

  3. Holscher, T., Schleyer, U., Merfort, M., Bringer-Meyer, S., Gorisch, H., & Sahm, H. (2009). Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans. Journal of Molecular Microbiology and Biotechnology, 16(1–2), 6–13.

    Google Scholar 

  4. Silberbach, M., Maier, B., Zimmermann, M., & Bchs, J. (2003). Glucose oxidation by Gluconobacter oxydans: Characterization in shaking-flasks, scale-up and optimization of the pH profile. Applied Microbiology and Biotechnology, 62(1), 92–98.

    Article  CAS  Google Scholar 

  5. Wei, G. D., Yang, X. P., Gan, T. L., Zhou, W. Y., Lin, J. P., & Wei, D. Z. (2009). High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production. Journal of Industrial Microbiology & Biotechnology, 36(8), 1029–1034.

    Article  CAS  Google Scholar 

  6. Gupta, A., Verma, V., & Qazi, G. (2006). Transposon induced mutation in Gluconobacter oxydans with special reference to its direct-glucose oxidation metabolism1. FEMS Microbiology Letters, 147(2), 181–188.

    Article  Google Scholar 

  7. Gupta, A., Felder, M., Verma, V., Cullum, J., & Qazi, G. (1999). A mutant of Gluconobacter oxydans deficient in gluconic acid dehydrogenase. FEMS Microbiology Letters, 179, 501–506.

    Article  CAS  Google Scholar 

  8. Krajewski, V., Simic, P., Mouncey, N. J., Bringer, S., Sahm, H., & Bott, M. (2010). Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation. Applied and Environmental Microbiology, 76(13), 4369–4376.

    Article  CAS  Google Scholar 

  9. Sambrook, J., Fritsch, E., & Maniatis, T. (1989). Molecular cloning. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  10. Derbise, A., Lesic, B., Dacheux, D., Ghigo, J., & Carniel, E. (2006). A rapid and simple method for inactivating chromosomal genes in Yersinia. FEMS Immunology and Medical Microbiology, 38(2), 113–116.

    Google Scholar 

  11. Prust, C., Hoffmeister, M., Liesegang, H., Wiezer, A., Fricke, W. F., Ehrenreich, A., et al. (2005). Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nature Biotechnology, 23(2), 195–200.

    Article  CAS  Google Scholar 

  12. Schleyer, U., Bringer-Meyer, S., & Sahm, H. (2008). An easy cloning and expression vector system for Gluconobacter oxydans. International Journal of Food Microbiology, 125(1), 91–95.

    Article  CAS  Google Scholar 

  13. Holscher, T., & Gorisch, H. (2006). Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. Journal of Bacteriology, 188(21), 7668–7676.

    Article  Google Scholar 

  14. Fong, S., Burgard, A., Herring, C., Knight, E., Blattner, F., Maranas, C., et al. (2005). In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnology and Bioengineering, 91(5), 643–648.

    Article  CAS  Google Scholar 

  15. Meiberg, J., & Spa, H. (1983). Microbial production of gluconic acid and gluconates. Antonie van Leeuwenhoek, 49(1), 89–90.

    Article  Google Scholar 

  16. Pronk, J., Levering, P., Olijve, W., & Van Dijken, J. (1989). Role of NADP-dependent and quinoprotein glucose dehydrogenases in gluconic acid production by Gluconobacter oxydans. Enzyme and Microbial Technology, 11(3), 160–164.

    Article  CAS  Google Scholar 

  17. Kitos, P., Wang, C., Mohler, B., King, T., & Cheldelin, V. (1958). Glucose and gluconate dissimilation in Acetobacter suboxydans. Journal of Biological Chemistry, 233(6), 1295.

    CAS  Google Scholar 

  18. Hua, Q., Joyce, A. R., Palsson, B. O., & Fong, S. S. (2007). Metabolic characterization of Escherichia coli strains adapted to growth on lactate. Applied and Environmental Microbiology, 73(14), 4639–4647.

    Article  CAS  Google Scholar 

  19. Ameyama, M., Shinagawa, E., Matsushita, K., & ADACHI, O. (1985). Solubilization, purification and properties of membrane-bound glycerol dehydrogenase from Gluconobacter industrius. Agricultural and Biological Chemistry, 49(4), 1001–1010.

    Article  CAS  Google Scholar 

  20. Cornish-Bowden, A. (1995). Fundamentals of enzyme kinetics. London: Portland Press.

    Google Scholar 

  21. Krochta, J., Tillin, S., & Hudson, J. (1988). Thermochemical conversion of polysaccharides in concentrated alkali to glycolic acid. Applied Biochemistry and Biotechnology, 17(1), 23–32.

    Article  CAS  Google Scholar 

  22. De Ley, J., & Kersters, K. (1964). Oxidation of aliphatic glycols by acetic acid bacteria. Microbiology and Molecular Biology Reviews, 28(2), 164.

    Google Scholar 

  23. Hernandez-Montalvo, V., Martinez, A., Hernandez-Chavez, G., Bolivar, F., Valle, F., & Gosset, G. (2003). Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnology and Bioengineering, 83(6), 687–694.

    Article  CAS  Google Scholar 

  24. Hua, Q., Joyce, A., Fong, S., & Palsson, B. (2006). Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains. Biotechnology and Bioengineering, 95(5), 992–1002.

    Article  CAS  Google Scholar 

  25. Conrad, T., Joyce, A., Applebee, M., Barrett, C., Xie, B., Gao, Y., et al. (2009). Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations. Genome Biology, 10(10), R118.

    Article  Google Scholar 

  26. Yang, C., Hua, Q., Baba, T., Mori, H., & Shimizu, K. (2003). Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnology and Bioengineering, 84(2), 129–144.

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by Shanghai Pujiang Program (No. 08PJ14038), National Special Fund for State Key Laboratory of Bioreactor Engineering (No. 2060204), SRF for ROCS, SEM, and partially supported by Shanghai Leading Academic Discipline Project (No. B505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, K., Lu, L., Wei, L. et al. Modification and Evolution of Gluconobacter oxydans for Enhanced Growth and Biotransformation Capabilities at Low Glucose Concentration. Mol Biotechnol 49, 56–64 (2011). https://doi.org/10.1007/s12033-011-9378-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9378-6

Keywords

Navigation