Skip to main content

Advertisement

Log in

An Adeno-Associated Virus Vector Efficiently and Specifically Transduces Mouse Skeletal Muscle

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Expression of a therapeutic gene in the skeletal muscle is a practical strategy to compensate a patients’ insufficient circulating factor. Its clinical application requires a muscle-targeting vector capable of inducing a continuous high-level transgene expression. We modified an adeno-associated virus serotype 2 (AAV2) vector expressing luciferase from the mouse muscle creatine kinase gene promoter-enhancer (Ckm). First, AAVS1 insulator was inserted into the vector genome for transcriptional enhancement. This increased transduction of mouse quadriceps muscle by 11-fold at 4 weeks after intramuscular injection. Second, two capsid modifications were combined (21F capsid): incorporation of a segment of AAV1 capsid to produce a hybrid capsid and substitution of a tyrosine with a phenylalanine. Use of 21F capsid increased muscle transduction further by 18-fold, resulting in 200-fold higher efficacy than that of the unmodified vector. Compared with a vector having human elongation factor 1α promoter which showed similar efficacy in the muscle, this vector having Ckm transduced non-muscle organs less efficiently after intravenous administration. The AAV2 vector composed of the modified genome and capsid provides a backbone to develop a clinical vector expressing a therapeutic gene in the muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexander, B. L., Ali, R. R., Alton, E. W., Bainbridge, J. W., Braun, S., Cheng, S. H., et al. (2007). Progress and prospects: Gene therapy clinical trials (part 1). Gene Therapy, 14, 1439–1447.

    Article  CAS  Google Scholar 

  2. Aiuti, A., Bachoud-Lévi, A. C., Blesch, A., Brenner, M. K., Cattaneo, F., Chiocca, E. A., et al. (2007). Progress and prospects: Gene therapy clinical trials (part 2). Gene Therapy, 14, 1555–1563.

    Article  Google Scholar 

  3. Chuah, M. K., Collen, D., & VandenDriessche, T. (2001). Gene therapy for hemophilia. Journal of Gene Medicine, 3, 3–20.

    Article  CAS  Google Scholar 

  4. Bohl, D., & Heard, J. M. (2000). Delivering erythropoietin through genetically engineered cells. Journal of the American Society of Nephrology, 11, S159–S162.

    CAS  Google Scholar 

  5. Kreiss, P., Bettan, M., Crouzet, J., & Scherman, D. (1999). Erythropoietin secretion and physiological effect in mouse after intramuscular plasmid DNA electrotransfer. Journal of Gene Medicine, 1, 245–250.

    Article  CAS  Google Scholar 

  6. MacColl, G. S., Novo, F. J., Marshall, N. J., Waters, M., Goldspink, G., & Bouloux, P. M. (2000). Optimisation of growth hormone production by muscle cells using plasmid DNA. Journal of Endocrinology, 165, 329–336.

    Article  CAS  Google Scholar 

  7. Xiao, X., Li, J., & Samulski, R. J. (1996). Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. Journal of Virology, 70, 8098–8108.

    CAS  Google Scholar 

  8. Xiao, X., Li, J., & Samulski, R. J. (1998). Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. Journal of Virology, 72, 2224–2232.

    CAS  Google Scholar 

  9. Takeshita, F., Takase, K., Tozuka, M., Saha, S., Okuda, K., Ishii, N., et al. (2007). Muscle creatine kinase/SV40 hybrid promoter for muscle-targeted long-term transgene expression. International Journal of Molecular Medicine, 19, 309–315.

    CAS  Google Scholar 

  10. Mueller, C., & Flotte, T. R. (2008). Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Therapy, 15, 858–863.

    Article  CAS  Google Scholar 

  11. Acland, G. M., Aguirre, G. D., Ray, J., Zhang, Q., Aleman, T. S., Cideciyan, A. V., et al. (2001). Gene therapy restores vision in a canine model of childhood blindness. Nature Genetics, 28, 92–95.

    CAS  Google Scholar 

  12. Flotte, T., Carter, B., Conrad, C., Guggino, W., Reynolds, T., Rosenstein, B., et al. (1996). A phase I study of an adeno-associated virus-CFTR gene vector in adult CF patients with mild lung disease. Human Gene Therapy, 7, 1145–1159.

    Article  CAS  Google Scholar 

  13. Kay, M. A., Manno, C. S., Ragni, M. V., Larson, P. J., Couto, L. B., McClelland, A., et al. (2000). Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nature Genetics, 24, 257–261.

    Article  CAS  Google Scholar 

  14. Flotte, T. R., Brantly, M. L., Spencer, L. T., Byrne, B. J., Spencer, C. T., Baker, D. J., et al. (2004). Phase I trial of intramuscular injection of a recombinant adeno-associated virus alpha 1-antitrypsin (rAAV2-CB-hAAT) gene vector to AAT-deficient adults. Human Gene Therapy, 15, 93–128.

    Article  Google Scholar 

  15. Snyder, R. O., & Francis, J. (2005). Adeno-associated viral vectors for clinical gene transfer studies. Current Gene Therapy, 5, 311–321.

    Article  CAS  Google Scholar 

  16. Duan, D., Sharma, P., Yang, J., Yue, Y., Dudus, L., Zhang, Y., et al. (1998). Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. Journal of Virology, 72, 8568–8577.

    CAS  Google Scholar 

  17. Vincent-Lacaze, N., Snyder, R. O., Gluzman, R., Bohl, D., Lagarde, C., & Danos, O. (1999). Structure of adeno-associated virus vector DNA following transduction of the skeletal muscle. Journal of Virology, 73, 1949–1955.

    CAS  Google Scholar 

  18. Schnepp, B. C., Clark, K. R., Klemanski, D. L., Pacak, C. A., & Johnson, P. R. (2003). Genetic fate of recombinant adneo-associated virus vector genomes in muscle. Journal of Virology, 77, 3495–3504.

    Article  CAS  Google Scholar 

  19. Chamberlain, J. S., Jaynes, J. B., & Hauschka, S. D. (1985). Regulation of creatine kinase induction in differentiating mouse myoblasts. Molecular and Cellular Biology, 5, 484–492.

    CAS  Google Scholar 

  20. Jaynes, J. B., Chamberlain, J. S., Buskin, J. N., Johnson, J. E., & Hauschka, S. D. (1986). Transcriptional regulation of the muscle creatine kinase gene and regulated expression in transfected mouse myoblasts. Molecular and Cellular Biology, 6, 2855–2864.

    CAS  Google Scholar 

  21. Jaynes, J. B., Johnson, J. E., Buskin, J. N., Gartside, C. L., & Hauschka, S. D. (1988). The muscle creatine kinase gene is regulated by multiple upstream elements, including a muscle-specific enhancer. Molecular and Cellular Biology, 8, 62–70.

    CAS  Google Scholar 

  22. Shield, M. A., Haugen, H. S., Clegg, C. H., & Hauschka, S. D. (1996). E-box sites and a proximal regulatory region of the muscle creatine kinase gene differentially regulate expression in diverse skeletal muscles and cardiac muscle of transgenic mice. Molecular and Cellular Biology, 16, 5058–5068.

    CAS  Google Scholar 

  23. Ogata, T., Kozuka, T., & Kanda, T. (2003). Identification of an insulator in AAVS1, a preferred region for integration of adeno-associated virus DNA. Journal of Virology, 77, 9000–9007.

    Article  CAS  Google Scholar 

  24. Mori-Uchino, M., Takeuchi, T., Murakami, I., Yano, T., Yasugi, T., Taketani, Y., et al. (2009). Enhanced transgene expression in the mouse skeletal muscle infected by the adeno-associated viral vector with the human elongation factor 1α promoter and a human chromatin insulator. Journal of Gene Medicine, 11, 598–604.

    Article  CAS  Google Scholar 

  25. Hauck, B., Xu, R. R., Xie, J., Wu, W., Ding, Q., Sipler, M., et al. (2006). Efficient AAV1-AAV2 hybrid vector for gene therapy of hemophilia. Human Gene Therapy, 17, 46–54.

    Article  CAS  Google Scholar 

  26. Xiao, W., Chirmule, N., Berta, S. C., McCullough, B., Gao, G., & Wilson, J. M. (1999). Gene therapy vectors based on adeno-associated virus type 1. Journal of Virology, 73, 3994–4003.

    CAS  Google Scholar 

  27. Chao, H., Liu, Y., Rabinowitz, J., Li, C., Samulski, R. J., & Walsh, C. E. (2000). Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Molecular Therapy, 2, 619–623.

    Article  CAS  Google Scholar 

  28. Zincarelli, C., Soltys, S., Rengo, G., & Rabinowitz, J. E. (2008). Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Molecular Therapy, 16, 1073–1080.

    Article  CAS  Google Scholar 

  29. Zhong, L., Li, B., Mah, C. S., Govindasamy, L., Agbandje-McKenna, M., Cooper, M., et al. (2008). Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proceedings of the National Academy of Sciences of the United States of America, 105, 7827–7832.

    Article  CAS  Google Scholar 

  30. Yaffe, D., & Saxel, O. (1997). Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature, 270, 725–727.

    Article  Google Scholar 

  31. Nakanishi, K., Dohmae, N., & Morishima, N. (2007). Endoplasmic reticulum stress increases myofiber formation in vitro. FASEB Journal, 11, 2994–3003.

    Article  Google Scholar 

  32. Qi, J. S., Minor, L. K., Smith, C., Hu, B., Yang, J., Andrade-Gordon, P., et al. (2005). Characterization of functional urotensin II receptors in human skeletal muscle myoblasts: Comparison with angiotensin II receptors. Peptides, 26, 683–690.

    Article  CAS  Google Scholar 

  33. Mori, S., Wang, L., Takeuchi, T., & Kanda, T. (2004). Two novel adeno-associated viruses from cynomolgus monkey: Pseudotyping characterization of capsid protein. Virology, 330, 375–383.

    Article  CAS  Google Scholar 

  34. Auricchio, A., Hildinger, M., O’Connor, E., Gao, G., & Wilson, J. M. (2001). Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-srep gravity-flow column. Human Gene Therapy, 12, 71–76.

    Article  CAS  Google Scholar 

  35. Opie, S. R., Warrington, K. H., Jr., Agbandje-McKenna, M., Zolotukhin, S., & Muzyczka, N. (2003). Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding. Journal of Virology, 77, 6995–7006.

    Article  CAS  Google Scholar 

  36. Jayandharan, G. R., Zhong, L., Sack, B. K., Rivers, A. E., Li, M., Li, B., et al. (2010). Optimized adeno-associated virus (AAV)-protein phosphatase-5 helper viruses for efficient liver transduction by single-stranded AAV vectors: Therapeutic expression of factor IX at reduced vector doses. Human Gene Therapy, 21, 271–283.

    Article  CAS  Google Scholar 

  37. Petrs-Silva, H., Dinculescu, A., Li, Q., Min, S. H., Chiodo, V., Pang, J. J., et al. (2009). High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Molecular Therapy, 17, 463–471.

    Article  CAS  Google Scholar 

  38. McCarty, D. M. (2008). Self-complementary AAV vectors; advances and applications. Molecular Therapy, 16, 1648–1656.

    Article  CAS  Google Scholar 

  39. Sun, J., Li, D., Hao, Y., Zhang, Y., Fan, W., Fu, J., et al. (2009). Posttranscriptional regulatory elements enhance antigen expression and DNA vaccine efficacy. DNA and Cell Biology, 28, 233–240.

    Article  CAS  Google Scholar 

  40. Arruda, V. R., Hagstrom, J. N., Deitch, J., Heiman-Patterson, T., Camire, R. M., Chu, K., et al. (2001). Posttranslational modifications of recombinant myotube-synthesized human factor IX. Blood, 97, 130–138.

    Article  CAS  Google Scholar 

  41. Chenuaud, P., Larcher, T., Rabinowitz, J. E., Provost, N., Cherel, Y., Casadevall, N., et al. (2004). Autoimmune anemia in macaques following erythropoietin gene therapy. Blood, 103, 3303–3304.

    Article  CAS  Google Scholar 

  42. Hockemeyer, D., Soldner, F., Beard, C., Gao, Q., Mitalipova, M., DeKelver, R. C., et al. (2009). Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnology, 27, 851–857.

    Article  CAS  Google Scholar 

  43. DeKelver, R. C., Choi, V. M., Moehle, E. A., Paschon, D. E., Hockemeyer, D., Meijsing, S. H., et al. (2010). Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Research, 20, 1133–1142.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kunito Yoshiike for critical reading of the manuscript. This work was supported by Health and Labour Sciences Research Grants from the Ministry of Health, Labour and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamasa Takeuchi.

Additional information

Isao Murakami and Takamasa Takeuchi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murakami, I., Takeuchi, T., Mori-Uchino, M. et al. An Adeno-Associated Virus Vector Efficiently and Specifically Transduces Mouse Skeletal Muscle. Mol Biotechnol 49, 1–10 (2011). https://doi.org/10.1007/s12033-010-9369-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9369-z

Keywords

Navigation