Skip to main content

Advertisement

Log in

A New Method for Repeated “Self-Cloning” Promoter Replacement in Saccharomyces cerevisiae

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A method for repeated PCR-mediated promoter replacement in the yeast Saccharomyces cerevisiae is described. It was proposed to use the DNA fragment comprising the marker gene that enables both positive and negative selection (a selectable/counter-selectable marker) surrounded by direct repeats of the desired promoter as a promoter replacement cassette. This fragment is integrated upstream of the target gene because of PCR-added terminal sequences for homologous recombination with the target locus. Subsequent marker excision via homologous recombination between the copies of the two promoters leaves one copy of the desired promoter upstream of the target genes, without any heterologous scar sequence. To test this method, a set of plasmids bearing the S. cerevisiae URA3 gene surrounded by two copies of the ADH1 or PGK1 promoter was constructed. Using these cassettes, the native promoters of the GSH1 and GSH2 genes were replaced in the ura3Δ0 recipient strains. The proposed method is useful for research applications due to simple marker excision, and for construction of “self-cloning” industrial strains, because no heterologous DNA is retained in the genome of the resulting strain after marker excision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lundblad, V., Hartzog, G., & Moqtaderi, Z. (1997) Manipulation of cloned yeast DNA. In F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, & K. Struhl (Eds.), Current Protocols in Molecular Biology (pp. 13.10.1–13.10.14). New York: Wiley.

  2. Bellí, G., Garí, E., Aldea, M., & Herrero, E. (1998). Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Yeast, 14, 1127–1138.

    Article  Google Scholar 

  3. Kötter, P., Weigand, J. E., Meyer, B., Entian, K. D., & Suess, B. (2009). A fast and efficient translational control system for conditional expression of yeast genes. Nucleic Acids Research, 37, e120.

    Article  Google Scholar 

  4. Verstrepen, K. J., & Thevelein, J. M. (2004). Controlled expression of homologous genes by genomic promoter replacement in the yeast Saccharomyces cerevisiae. Methods in Molecular Biology, 267, 259–266.

    CAS  Google Scholar 

  5. Johansson, B., & Hahn-Hägerdal, B. (2002). Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae. Yeast, 19, 225–231.

    Article  CAS  Google Scholar 

  6. Nevoigt, E., Kohnke, J., Fischer, C. R., Alper, H., Stahl, U., & Stephanopoulos, G. (2006). Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 72, 5266–5273.

    Article  CAS  Google Scholar 

  7. Scherer, S., & Davis, R. W. (1979). Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proceedings of the National Academy of Sciences of the United States of America, 76, 4951–4955.

    Article  CAS  Google Scholar 

  8. Hirosawa, I., Aritomi, K., Hoshida, H., Kashiwagi, S., Nishizawa, Y., & Akada, R. (2004). Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocol. Applied Microbiology and Biotechnology, 65, 68–73.

    Article  CAS  Google Scholar 

  9. Erdeniz, N., Mortensen, U. H., & Rothstein, R. (1997). Cloning-free PCR-based allele replacement methods. Genome Research, 7, 1174–1183.

    CAS  Google Scholar 

  10. Schneider, B. L., Seufert, W., Steiner, B., Yang, Q. H., & Futcher, A. B. (1995). Use of polymerase chain reaction epitope tagging for protein tagging in Saccharomyces cerevisiae. Yeast, 11, 1265–1274.

    Article  CAS  Google Scholar 

  11. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  12. Sherman, F. (2002). Getting started with yeast. Methods in Enzymology, 350, 3–41.

    Article  CAS  Google Scholar 

  13. Becker, D. M., & Lundblad, V. (1997) Introduction of DNA into yeast cells. In F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, & K. Struhl (Eds.), Current Protocols in Molecular Biology (pp. 13.7.1–13.7.10). New York: Wiley.

  14. Hoffman, C. S., (1997) Preparation of yeast DNA. In F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, & K. Struhl (Eds.), Current Protocols in Molecular Biology (pp. 13.11.1–13.11.4). New York: Wiley.

  15. Wach, A. (1996). PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast, 12, 259–265.

    Article  CAS  Google Scholar 

  16. Shevchuk, N. A., Bryksin, A. V., Nusinovich, Y. A., Cabello, F. C., Sutherland, M., & Ladisch, S. (2004). Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Research, 32, e19.

    Article  Google Scholar 

  17. Mumberg, D., Müller, R., & Funk, M. (1995). Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene, 156, 119–122.

    Article  CAS  Google Scholar 

  18. DeRisi, J. L., Iyer, V. R., & Brown, P. O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278, 680–686.

    Article  CAS  Google Scholar 

  19. Hauf, J., Zimmermann, F. K., & Müller, S. (2000). Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enyzme and Microbial Technology, 26, 688–698.

    Article  CAS  Google Scholar 

  20. Boeke, J. D., LaCroute, F., & Fink, G. R. (1984). A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Molecular and General Genetics, 197, 345–346.

    Article  CAS  Google Scholar 

  21. Boeke, J. D., Trueheart, J., Natsoulis, G., & Fink, G. R. (1987). 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods in Enzymology, 154, 164–175.

    Article  CAS  Google Scholar 

  22. Alani, E., Cao, L., & Kleckner, N. (1987). A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics, 116, 541–545.

    CAS  Google Scholar 

  23. Längle-Rouault, F., & Jacobs, E. (1995). A method for performing precise alterations in the yeast genome using a recyclable selectable marker. Nucleic Acids Research, 23, 3079–3081.

    Article  Google Scholar 

  24. Akada, R., Kitagawa, T., Kaneko, S., Toyonaga, D., Ito, S., Kakihara, Y., et al. (2006). PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast, 23, 399–405.

    Article  CAS  Google Scholar 

  25. Kistler, M., Maier, K., & Eckardt-Schupp, F. (1990). Genetic and biochemical analysis of glutathione-deficient mutants of Saccharomyces cerevisiae. Mutagenesis, 5, 39–44.

    Article  CAS  Google Scholar 

  26. Ohtake, Y., & Yabuuchi, S. (1991). Molecular cloning of the gamma-glutamylcysteine synthetase gene of Saccharomyces cerevisiae. Yeast, 7, 953–961.

    Article  CAS  Google Scholar 

  27. Ohtake, Y., Satou, A., & Yabuuchi, S. (1990). Isolation and characterization of glutathione biosynthesis-deficient mutants in Saccharomyces cerevisiae. Agricultural and Biological Chemistry, 54, 3145–3150.

    CAS  Google Scholar 

  28. Grant, C. M., MacIver, F. H., & Dawes, I. W. (1997). Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine. Molecular Biology of the Cell, 8, 1699–1707.

    CAS  Google Scholar 

  29. Inoue, Y., Sugiyama, K., Izawa, S., & Kimura, A. (1998). Molecular identification of glutathione synthetase (GSH2) gene from Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 1395, 315–320.

    CAS  Google Scholar 

  30. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., & Cullin, C. (1993). A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Research, 21, 3329–3330.

    Article  CAS  Google Scholar 

  31. Sauer, B. (1994). Recycling selectable markers in yeast. Biotechniques, 16, 1086–1088.

    CAS  Google Scholar 

  32. Fonzi, W. A., & Irwin, M. Y. (1993). Isogenic strain construction and gene mapping in Candida albicans. Genetics, 134, 717–728.

    CAS  Google Scholar 

  33. Roemer, T., Jiang, B., Boone, C., & Bussey, H. (2004) Gene disruption methodologies for drug target discovery. United States Patent 6783985.

  34. Hashimoto, S., Ogura, M., Aritomi, K., Hoshida, H., Nishizawa, Y., & Akada, R. (2005). Isolation of auxotrophic mutants of diploid industrial yeast strains after UV mutagenesis. Applied and Environmental Microbiology, 71, 309–312.

    Article  Google Scholar 

  35. Gueldener, U., Heinisch, J., Koehler, G. J., Voss, D., & Hegemann, J. H. (2002). A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Research, 30, e23.

    Article  CAS  Google Scholar 

  36. Debets, A. J., Swart, K., Holub, E. F., Goosen, T., & Bos, C. J. (1990). Genetic analysis of amdS transformants of Aspergillus niger and their use in chromosome mapping. Molecular and General Genetics, 222, 284–290.

    Article  CAS  Google Scholar 

  37. Van Maris, A. J., Bakker, B. M., Brandt, M., Boorsma, A., Teixeira de Mattos, M. J., Grivell, L. A., et al. (2001). Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae. FEMS Yeast Research, 1, 139–149.

    Article  Google Scholar 

  38. Read, J. D., Colussi, P. A., Ganatra, M. B., & Taron, C. H. (2007). Acetamide selection of Kluyveromyces lactis cells transformed with an integrative vector leads to high-frequency formation of multicopy strains. Applied and Environmental Microbiology, 73, 5088–5096.

    Article  CAS  Google Scholar 

  39. Akada, R., Hirosawa, I., Kawahata, M., Hoshida, H., & Nishizawa, Y. (2002). Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast. Yeast, 19, 393–402.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Sergey V. Mashko and Dr. Vladimir M. Belkov for their help in manuscript preparation, Dr. Nataliya V. Stoynova for helpful suggestions and comments, and Dr. Dmitry G. Kozlov for the kind gift of the pUC19AOX-G418-BRI plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vsevolod A. Serebryanyy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sofyanovich, O.A., Nishiuchi, H., Yamagishi, K. et al. A New Method for Repeated “Self-Cloning” Promoter Replacement in Saccharomyces cerevisiae . Mol Biotechnol 48, 218–227 (2011). https://doi.org/10.1007/s12033-010-9362-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9362-6

Keywords

Navigation