Skip to main content
Log in

A Novel Transcript of Oil Palm (Elaeis guineensis Jacq.), Eg707, is Specifically Upregulated in Tissues Related to Totipotency

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 08 December 2012

Abstract

In this study, we report the molecular characterization of clone Eg707 isolated from cell suspension culture of the oil palm. The deduced polypeptide of clone Eg707 is highly similar to an unknown protein from Arabidopsis thaliana. The presence of an Ald-Xan-dh-C2 superfamily domain in the deduced protein sequence suggested that Eg707 protein might be involved in abscisic acid biosynthesis. Eg707 might be present as a single copy gene in the oil palm genome. This gene is highly expressed in tissue cultured materials compared to vegetative and reproductive tissues, suggesting a role of this gene during oil palm somatic embryogenesis or at the early stages of embryo development. Expression analysis of Eg707 by RNA in situ hybridization showed that Eg707 transcripts were present throughout somatic embryo development starting from proembryo formation at the embryogenic callus stages till the maturing embryo stages. Since proembryo formation within the embryogenic callus is one of the first key factors in oil palm somatic embryo development, it is suggested that Eg707 could be used as a reliable molecular marker for detecting early stage of oil palm somatic embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahmad, S., Ahmad, S., Shariff, F. M., Balu, N., & Idris, N. A. N. (2008). Changing market trends in the oils and fats sector. Oil Palm Industry Economic Journal, 8, 1–11.

    Google Scholar 

  2. Gorret, N., bin Rosli, S. K., Oppenheim, S. F., Willis, L. B., Lessard, P. A., Rha, C., et al. (2004). Bioreactor culture of oil palm (Elaeis guineensis) and effects of nitrogen source, inoculum size, and conditioned medium on biomass production. Journal of Biotechnology, 108, 253–263.

    Article  CAS  Google Scholar 

  3. Parveez, G. K. A., Masri, M. M., Zainal, A., Abdul Majid, N., Yunus, A. M. M., Fadilah, H. H., et al. (2000). Transgenic oil palm: production and projection. Biochemical Society Transactions, 28, 969–972.

    Article  CAS  Google Scholar 

  4. Sambanthamurthi, R., Singh, R., Parveez, G. K. A., Meilina, O. A., & Kushairi, A. (2009). Opportunities for the oil palm via breeding and biotechnology. In S. M. Jain & P. M. Priyadarshan (Eds.), Breeding plantation tree crops: tropical species. New York: Springer New York Publisher.

    Google Scholar 

  5. Staritsky, G. (1970). Tissue culture of the oil palm (Elaeis guineensis Jacq.) as a tool for its vegetative propagation. Euphytica, 19, 288–292.

    Article  Google Scholar 

  6. Jouannic, S., Argout, X., Lechauve, F., Fizames, C., Borgel, A., Morcillo, F., et al. (2005). Analysis of expressed sequence tags from oil palm (Elaeis guineensis). FEBS Letters, 579, 2709–2714.

    Article  CAS  Google Scholar 

  7. Basri, M. W., Siti Nor Akmar, A., & Henson, I. E. (2005). Oil palm—achievements and potential. Plant Production Science, 8, 288–297.

    Article  Google Scholar 

  8. Willis. L. B., Gil, G. A., Lee, H. L. T., Choi, D. S., Schoenheit, J., Ram, R. J., Rha, C. and Sinskey, A. J. (2008) Application of spectroscopic methods for the automation of oil palm culture. Journal of Oil Palm Research. Special Issue on Malaysia-MIT Biotechnology Partnership Programme 1, pp. 1–13.

  9. Tarmizi, A. H., Norjihan, M. A., & Zaiton, R. (2004). Multiplication of oil palm suspension cultures in a bench-top (2-litre) bioreactor. Journal of Oil Palm Research, 16, 44–49.

    Article  Google Scholar 

  10. Corley, R. H. V., & Tinker, P. B. (2003). Vegetative propagation and biotechnology. In R. H. V. Corley & P. B. Tinker (Eds.), The oil palm (pp. 201–215). Oxford: Blackwell Science Ltd.

    Chapter  Google Scholar 

  11. Wooi, K. C. (1995). Oil palm tissue culture—current practice and constraints. In V. Rao, I. E. Henson, & N. Rajanaidu (Eds.), Recent developments in oil palm tissue culture and biotechnology. Malaysia: Bangi: MPOB Press.

    Google Scholar 

  12. Low, E. T. L., Tan, J. S., Chan, P. L., Boon, S. H., Wong, Y. L., Rozana, R., Ooi, L. C. L., Ma, L. S., Ong-Abdullah, M., Cheah, S. C. and Singh, R. (2006). Developments toward the application of DNA chip technology in oil palm tissue culture. Journal of Oil Palm Research, 87–98.

  13. Ho, C. L., Kwan, Y. Y., Choi, M. C., Tee, S. S., Ng, W. H., Lim, K. A., et al. (2007). Analysis and functional annotation of expressed sequence tags (ESTs) from multiple tissues of oil palm (Elaeis guineensis Jacq.). BMC Genomics, 8, 381.

    Article  Google Scholar 

  14. Low, E. T. L., Alias, H., Boon, S. H., Shariff, E. M., Tan, C. E. A., Ooi, L. C. L., et al. (2008). Oil palm (Elaeis guineensis Jacq.) tissue culture ESTs: identifying genes associated with callogenesis and embryogenesis. BMC Plant Biology, 8, 62.

    Article  Google Scholar 

  15. Boonanuntanasarn, S. (2008). Gene knockdown: A powerful tool for gene function study in fish. J. World Aquaculture Society, 39, 311–323.

    Article  Google Scholar 

  16. Rudd, S. (2003). Expressed sequence tags: Alternative or complement to whole genome sequences? Trends in Plant Science, 8, 321–329.

    Article  CAS  Google Scholar 

  17. Fristensky, B., Balcerzak, M., He, D. and Zhang, P. (1999). Expressed sequence tags from defense response of Brassica napus to Leptosphaeria maculans. Molecular Plant Pathology Online (www.bspp.org.uk/mppol/1999/0301FRISTENSKY).

  18. Ooi, S. E. (2003). An examination of differentially-expressed genes from oil palm embryogenic and non-embryogenic cultures, Ph.D. dissertation, Universiti Putra Malaysia. pp. 265.

  19. Hodge, R., Paul, W., Draper, J., & Scott, R. (1992). Cold plaque screening: A simple technique for the isolation of low abundance, differentially expressed transcripts from conventional cDNA libraries. Plant Journal, 2, 257–260.

    Article  CAS  Google Scholar 

  20. Schultz, D. J., Craig, R., Cox-Foster, D. L., Mumma, R. O., & Medford, J. J. (1994). RNA isolation from recalcitrant plant tissue. Plant Molecular Biology Reporter, 12, 310–316.

    Article  CAS  Google Scholar 

  21. Altschul, S. P., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–33402.

    Article  CAS  Google Scholar 

  22. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325.

    Article  CAS  Google Scholar 

  23. Church, G. M., & Gilbert, W. (1984). Genomic sequencing. Proceedings of the National Academy of Sciences USA, 81, 1991–1995.

    Article  CAS  Google Scholar 

  24. Shizadegan, M., Christie, P., & Seemann, J. R. (1991). An efficient method for isolation of RNA from tissue cultured plant cells. Nucleic Acids Research, 19, 6055.

    Article  Google Scholar 

  25. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2∆∆CT method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  26. Coen, E. S., Romero, J. M., Doyle, S., Elliot, R., Murphy, G., & Carpenter, R. (1990). Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell, 63, 1311–1322.

    Article  CAS  Google Scholar 

  27. Jackson, D. P. (1991). In situ hybridization in plants. In D. J. Bowles, S. J. Gurr, & M. McPherson (Eds.), Molecular plant pathology: a practical approach (pp. 157–181). Oxford: Oxford University Press.

    Google Scholar 

  28. Ong-Abdullah, M. (2001). An examination of embryogenic and non-embryogenic cultures of oil palm (Elaeis guineensis Jacq.). Ph. D. dissertation, Universiti Putra Malaysia. pp. 175.

  29. Fisher, D. B. (1968). Protein staining of ribboned epon sections for light microscopy. Histodaemie, 16, 92–96.

    CAS  Google Scholar 

  30. la Cour, T. L., Kiemer, L., Mølgaard, A., Gupta, R., Skriver, K., & Brunak, S. (2004). Analysis and prediction of leucine-rich nuclear export signals. Protein Engineering Design and Selection, 17, 527–536.

    Article  CAS  Google Scholar 

  31. Haasen, A., Köhler, C., Neuhaus, G., & Merkle, T. (1999). Nuclear export of proteins in plants: AtXPO1 is the export receptor for leucine-rich nuclear export signals in Arabidopsis thaliana. Plant Journal, 20, 695–705.

    Article  CAS  Google Scholar 

  32. Seo, M., Peeters, A. J. M., Koiwai, H., Oritani, T., Marion-Poll, A., Zeevaart, J. A. D., et al. (2000). The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proceedings of the National Academy of Sciences of the United States of America, 97, 12908–12913.

    Article  CAS  Google Scholar 

  33. González-Guzmán, M., Abia, D., Salinas, J., Serrano, R., & Rodriguez, P. L. (2004). Two new alleles of the abscisic aldehyde oxidase 3 gene reveal its role in abscisic acid biosynthesis in seeds. Plant Physiology, 135, 325–333.

    Article  Google Scholar 

  34. Sekimoto, H., Seo, M., Dohmae, N., Takio, K., Kamiya, Y., & Koshiba, T. (1997). Cloning and molecular characterization of plant aldehyde oxidase. Journal of Biological Chemistry, 272, 15280–15285.

    Article  CAS  Google Scholar 

  35. Omarov, R. T., Sagi, M., & Lips, S. H. (1998). Regulation of aldehyde oxidase and nitrate reductase in roots of barley (Hordeum vulgare L.) by nitrogen source and salinity. Journal of Experimental Botany, 49, 897–902.

    CAS  Google Scholar 

  36. Kiyosue, T., Nakajima, M., Yamaguchi, I., Satoh, S., Kamda, H., & Harada, H. (1992). Endogenous levels of abscisic acid in embryogenic cells, non-embryogenic cells and somatic embryos of carrot (Daoucus curota L.). Biochem Physiol Pflanz, 188, 343–347.

    CAS  Google Scholar 

  37. Shah, K., Vervoort, J., & de Vries, S. C. (2001). Role of threonines in the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 activation loop in phosphorylation. Journal of Biological Chemistry, 276, 41263–41269.

    Article  CAS  Google Scholar 

  38. Hecht, V., Vielle-Calzada, J., Hartog, M. V., Schmidt, E. D. L., Boutilier, K., Grossniklaus, U., et al. (2001). The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiology, 127, 803–816.

    Article  CAS  Google Scholar 

  39. Schmidt, E. D. L., Guzzo, F., Toonen, M. A. J., & de Vries, S. C. (1997). A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development, 124, 2049–2062.

    CAS  Google Scholar 

  40. Nolan, K. E., Irwanto, R. R., & Rose, R. J. (2003). Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiology, 133, 218–230.

    Article  CAS  Google Scholar 

  41. Thomas, C., Meyer, D., Himber, C., & Steinmetz, A. (2004). Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiology and Biochemistry, 42, 35–42.

    Article  CAS  Google Scholar 

  42. Karami, O., Aghavaisi, B., & Pour, A. M. (2009). Molecular aspects of somatic-to-embryogenic transition in plants. Journal of Chemical Biology, 2, 177–190.

    Article  Google Scholar 

  43. Chugh, A., & Khurana, P. (2002). Gene expression during somatic embryogenesis—recent advances. Current Science, 83, 715–730.

    CAS  Google Scholar 

  44. Schwendiman, J., Pannetier, C., & Michaux-Ferriere, N. (1988). Histology of somatic embryogenesis from leaf explants of the oil palm Elaeis guineensis. Annals of Botany, 62, 43–52.

    Google Scholar 

  45. Lowe, K., Taylor, B., Ryan, P., & Paterson, K. E. (1985). Plant regeneration via organogenesis and embryogenesis in the maize inbred line B73. Plant Science, 41, 125–132.

    Article  Google Scholar 

  46. Ikeda, M., Umehara, M., & Kamada, H. (2006). Embryogenesis-related genes; Its expression and roles during somatic and zygotic embryogenesis in carrot and Arabidopsis. Plant Biotechnology, 23, 153–161.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science, Technology and Innovation (MOSTI), Malaysia under the Intensified Research for Priority Areas (IRPA), Grant No. 01-02-04-0387-PR0015/07-02 and ABI Top Down Grant (ABI (P)-1). We are grateful to Advanced Agriecological Research Sdn. Bhd., Malaysia (Ms. Girlie Wong) for kindly providing the suspension cultures for the initial part of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parameswari Namasivayam.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s12033-012-9630-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thuc, L.V., Sarpan, N., Ky, H. et al. A Novel Transcript of Oil Palm (Elaeis guineensis Jacq.), Eg707, is Specifically Upregulated in Tissues Related to Totipotency. Mol Biotechnol 48, 156–164 (2011). https://doi.org/10.1007/s12033-010-9356-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9356-4

Keywords

Navigation