Skip to main content

Advertisement

Log in

Comparative Analysis of Transduced Primary Human Dendritic Cells Generated by the Use of Three Different Lentiviral Vector Systems

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lentiviral gene transfer vectors are suitable for genetically modifying non-cycling primary human cells. In this study, we analyzed transduced human dendritic cells (DC) generated by the use of three different GFP-encoding lentiviral vectors, HIV-2 ROD A Δenv-GFP (ROD A), SIVsmm PBj ΔE EGFP (PBj), and SIVmac ΔE EGFP (SIVmac). CD14+ monocytes were isolated from buffy coat, transduced, and differentiated to immature and mature DC. Cytofluometric analysis of DC revealed high transduction efficiencies at MOI 1 for simian immunodeficiency virus (SIV)-derived vectors PBj and SIVmac ranging between 80–90 and 70–90%, respectively. In contrast, transduction with ROD A resulted only in approximately 30%-positive DC at the same MOI. Of note, none of the analyzed vectors affected expression of maturation and/or activation markers. Moreover, transduction with PBj or SIVmac did not induce significant cytokine responses whereas ROD A transduction stimulated weak interferon-alpha responses. SIVmac transduced DC showed normal phagocytosis of antigen and normal allo T cell stimulatory capacity when compared with untreated DC. Thus, the SIVmac lentiviral transduction vector is suitable for efficient genetic modification of human DC without affecting phenotype or function and thus qualifies this vector as a versatile tool for use in basic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jonuleit, H., Tuting, T., Steitz, J., Bruck, J., Giesecke, A., Steinbrink, K., et al. (2000). Efficient transduction of mature CD83+ dendritic cells using recombinant adenovirus suppressed T cell stimulatory capacity. Gene Therapy, 7, 249–254.

    Article  CAS  Google Scholar 

  2. Chinnasamy, N., Treisman, J. S., Oaks, M. K., Hanson, J. P., & Chinnasamy, D. (2005). Ex vivo generation of genetically modified dendritic cells for immunotherapy: Implications of lymphocyte contamination. Gene Therapy, 12, 259–271.

    Article  CAS  Google Scholar 

  3. Gruber, A., Kan-Mitchell, J., Kuhen, K. L., Mukai, T., & Wong-Staal, F. (2000). Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood, 96, 1327–1333.

    CAS  Google Scholar 

  4. Seeds, R. E., Gordon, S., & Miller, J. L. (2006). Receptors and ligands involved in viral induction of type I interferon production by plasmacytoid dendritic cells. Immunobiology, 211, 525–535.

    Article  CAS  Google Scholar 

  5. Reuter, S., Kaumanns, P., Buschhorn, S. B., & Dittmar, M. T. (2005). Role of HIV-2 envelope in Lv2-mediated restriction. Virology, 332, 347–358.

    Article  CAS  Google Scholar 

  6. Muhlebach, M. D., Wolfrum, N., Schule, S., Tschulena, U., Sanzenbacher, R., Flory, E., et al. (2005). Stable transduction of primary human monocytes by simian lentiviral vector PBj. Molecular Therapy, 12, 1206–1216.

    Article  Google Scholar 

  7. Liehl, B., Hlavaty, J., Moldzio, R., Tonar, Z., Unger, H., Salmons, B., et al. (2007). Simian immunodeficiency virus vector pseudotypes differ in transduction efficiency and target cell specificity in brain. Gene Therapy, 14, 1330–1343.

    CAS  Google Scholar 

  8. Schnell, T., Foley, P., Wirth, M., Munch, J., & Uberla, K. (2000). Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus. Human Gene Therapy, 11, 439–447.

    Article  CAS  Google Scholar 

  9. Goujon, C., Arfi, V., Pertel, T., Luban, J., Lienard, J., Rigal, D., et al. (2008). Characterization of simian immunodeficiency virus SIVSM/human immunodeficiency virus type 2 Vpx function in human myeloid cells. Journal of Virology, 82, 12335–12345.

    Article  CAS  Google Scholar 

  10. Schule, S., Kloke, B. P., Kaiser, J. K., Heidmeier, S., Panitz, S., Wolfrum, N., et al. (2009). Restriction of HIV-1 replication in monocytes is abolished by Vpx of SIVsmmPBj. PLoS One, 4, e7098.

    Article  Google Scholar 

  11. Jonuleit, H., Kuhn, U., Muller, G., Steinbrink, K., Paragnik, L., Schmitt, E., et al. (1997). Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. European Journal of Immunology, 27, 3135–3142.

    Article  CAS  Google Scholar 

  12. Mailliard, R. B., Wankowicz-Kalinska, A., Cai, Q., Wesa, A., Hilkens, C. M., Kapsenberg, M. L., et al. (2004). Alpha-type-1 polarized dendritic cells: A novel immunization tool with optimized CTL-inducing activity. Cancer Research, 64, 5934–5937.

    Article  CAS  Google Scholar 

  13. Wolfrum, N., Muhlebach, M. D., Schule, S., Kaiser, J. K., Kloke, B. P., Cichutek, K., et al. (2007). Impact of viral accessory proteins of SIVsmmPBj on early steps of infection of quiescent cells. Virology, 364, 330–341.

    Article  CAS  Google Scholar 

  14. Lane, P., Burdet, C., McConnell, F., Lanzavecchia, A., & Padovan, E. (1995). CD40 ligand-independent B cell activation revealed by CD40 ligand-deficient T cell clones: Evidence for distinct activation requirements for antibody formation and B cell proliferation. European Journal of Immunology, 25, 1788–1793.

    Article  CAS  Google Scholar 

  15. Connolly, J. B. (2002). Lentiviruses in gene therapy clinical research. Gene Therapy, 9, 1730–1734.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Peter Lane for CD40L-expressing J558L cell transfectants and Kay-Martin Hanschmann for statistical analysis. This study was supported in part by the BMBF (contract number 0315498B to U.K.). E. Grabski was supported by a scholarship from Hannover Biomedical Research School.

Conflict of interset

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Kalinke.

Additional information

Elena Grabski and Zoe Waibler contributed equally to this work.

TWINCORE is a joint venture between the Medical School Hannover (MHH) and The Helmholtz Centre for Infection Research (HZI).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabski, E., Waibler, Z., Schüle, S. et al. Comparative Analysis of Transduced Primary Human Dendritic Cells Generated by the Use of Three Different Lentiviral Vector Systems. Mol Biotechnol 47, 262–269 (2011). https://doi.org/10.1007/s12033-010-9340-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9340-z

Keywords

Navigation