Skip to main content

Advertisement

Log in

E. coli-Based Cell-Free Expression, Purification and Characterization of the Membrane-Bound Ligand-Binding CHASE-TM Domain of the Cytokinin Receptor CRE1/AHK4 of Arabidopsis thaliana

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The plant hormone cytokinin is implicated in a large number of developmental and physiological processes. In the model plant Arabidopsis thaliana cytokinin is perceived by a class of membrane-bound receptor histidine kinases with three members, namely AHK2, AHK3, and CRE1/AHK4. These receptors possess an N-terminally located putative extracellular cyclases/histidine kinases associated sensor extracellular (CHASE) domain, which is responsible for hormone recognition. This hydrophilic domain and the two flanking transmembrane regions (CHASE-TM) were expressed using a cell-free protein expression system based on a bacterial ribosomal extract. To obtain soluble CHASE-TM protein, different detergents were directly added to the cell-free reaction and their effect on the yield of soluble protein was studied. After optimising the experimental set-up and employing Brij 58 as a detergent more than 3 mg/ml soluble protein of the CHASE-TM domain were obtained. Affinity purification via a C-terminally fused His-tag resulted in greater than 90% purity. The identity of the purified domain was confirmed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. Circular dichroism spectroscopy was used and a predominantly α-helical folding pattern was shown, which is in good accordance with secondary structure prediction. A newly developed cytokinin binding assay confirmed the functionality of the thus expressed and purified CHASE-TM domain. The work presented clearly demonstrates the feasibility of producing high amounts of a plant membrane protein using a cell-free protein expression system. This opens the possibility of further biochemical and pharmacological analysis, as well as structural studies on this type of receptor protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miller, C. O., Skoog, F., Vonsaltza, M. H., & Strong, F. M. (1955). Kinetin, a cell division factor from deoxyribonucleic acid. Journal of the American Chemical Society, 77, 1392.

    Article  CAS  Google Scholar 

  2. Mok, D. W. S., & Mok, M. C. (2001). Cytokinin metabolism and action. Annual Reviews of Plant Physiology and Plant Molecular Biology, 52, 89–118.

    Article  CAS  Google Scholar 

  3. Werner, T., & Schmülling, T. (2009). Cytokinin action in plant development. Current Opinion in Plant Biology, 12, 527–538.

    Article  CAS  Google Scholar 

  4. Gonzalez-Rizzo, S., Crespi, M., & Frugier, F. (2006). The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell, 18, 2680–2693.

    Article  CAS  Google Scholar 

  5. Murray, J. D., Karas, B. J., Sato, S., Tabata, S., Amyot, L., & Szczyglowski, K. (2007). A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science, 315, 101–104.

    Article  CAS  Google Scholar 

  6. Tirichine, L., Sandal, N., Madsen, L. H., Radutoiu, S., Albrektsen, A. S., Sato, S., et al. (2007). A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science, 315, 104–107.

    Article  CAS  Google Scholar 

  7. Salomé, P. A., To, J. P., Kieber, J. J., & McClung, C. R. (2006). Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. Plant Cell, 18, 55–69.

    Article  Google Scholar 

  8. West, A. H., & Stock, A. M. (2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends in Biochemical Sciences, 26, 369–376.

    Article  CAS  Google Scholar 

  9. Heyl, A., Werner, T., & Schmülling, T. (2006). Cytokinin metabolism and signal transduction. In P. Hedden & S. G. Thomas (Eds.), Annual Plant Reviews: plant hormone signaling, 24. Oxford: Blackwell Publishing.

    Google Scholar 

  10. Müller, B., & Sheen, J. (2007). Advances in cytokinin signaling. Science, 318, 68–69.

    Article  Google Scholar 

  11. To, J. P., & Kieber, J. J. (2008). Cytokinin signaling: two-components and more. Trends in Plant Science, 13, 85–92.

    Article  CAS  Google Scholar 

  12. To, J. P., Haberer, G., Ferreira, F. J., Deruere, J., Mason, M. G., Schaller, G. E., et al. (2004). Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell, 16, 658–671.

    Article  CAS  Google Scholar 

  13. Pils, B., & Heyl, A. (2009). Unraveling the evolution of cytokinin signaling. Plant Physiology, 151, 782–791.

    Article  CAS  Google Scholar 

  14. Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayashi, M., Kato, T., et al. (2001). Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature, 409, 1060–1063.

    Article  CAS  Google Scholar 

  15. Suzuki, T., Miwa, K., Ishikawa, K., Yamada, H., Aiba, H., & Mizuno, T. (2001). The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant and Cell Physiology, 42, 107–113.

    Article  CAS  Google Scholar 

  16. Ueguchi, C., Sato, S., Kato, T., & Tabata, S. (2001). The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant and Cell Physiology, 42, 751–755.

    Article  CAS  Google Scholar 

  17. Yamada, H., Suzuki, T., Terada, K., Takei, K., Ishikawa, K., Miwa, K., et al. (2001). The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant and Cell Physiology, 42, 1017–1023.

    Article  CAS  Google Scholar 

  18. Spíchal, L., Rakova, N. Y., Riefler, M., Mizuno, T., Romanov, G. A., Strnad, M., et al. (2004). Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant and Cell Physiology, 45, 1299–1305.

    Article  Google Scholar 

  19. Romanov, G. A., Lomin, S. N., & Schmülling, T. (2006). Biochemical characteristics and ligand-binding properties of Arabidopsis cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. Journal of Experimental Botany, 57, 4051–4058.

    Article  CAS  Google Scholar 

  20. Anantharaman, V., & Aravind, L. (2001). The CHASE domain: a predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors. Trends in Biochemical Sciences, 26, 579–582.

    Article  CAS  Google Scholar 

  21. Mougel, C., & Zhulin, I. B. (2001). CHASE: an extracellular sensing domain common to transmembrane receptors from prokaryotes, lower eukaryotes and plants. Trends in Biochemical Sciences, 26, 582–584.

    Article  CAS  Google Scholar 

  22. Heyl, A., Wulfetange, K., Pils, B., Nielsen, N., Romanov, G. A., & Schmülling, T. (2007). Evolutionary proteomics identifies amino acids essential for ligand-binding of the cytokinin receptor CHASE domain. BMC Evolutionary Biology, 7, 62.

    Article  Google Scholar 

  23. Miwa, K., Ishikawa, K., Terada, K., Yamada, H., Suzuki, T., Yamashino, T., et al. (2007). Identification of amino acid substitutions that render the Arabidopsis cytokinin receptor histidine kinase AHK4 constitutively active. Plant and Cell Physiology, 48, 1809–1814.

    Article  CAS  Google Scholar 

  24. Spíchal, L., Werner, T., Popa, I., Riefler, M., Schmülling, T., & Strnad, M. (2009). The purine derivative PI-55 blocks cytokinin action via receptor inhibition. FEBS J, 276, 244–253.

    Article  Google Scholar 

  25. Yokoyama, S. (2003). Protein expression systems for structural genomics and proteomics. Current Opinion in Chemical Biology, 7, 39–43.

    Article  CAS  Google Scholar 

  26. Endo, Y., & Sawasaki, T. (2006). Cell-free expression systems for eukaryotic protein production. Current Opinion in Biotechnology, 17, 373–380.

    Article  CAS  Google Scholar 

  27. Ishihara, G., Goto, M., Saeki, M., Ito, K., Hori, T., Kigawa, T., et al. (2005). Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors. Protein Expression and Purification, 41, 27–37.

    Article  CAS  Google Scholar 

  28. Klammt, C., Schwarz, D., Fendler, K., Haase, W., Dötsch, V., & Bernhard, F. (2005). Evaluation of detergents for the soluble expression of alpha-helical and beta-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS Journal, 272, 6024–6038.

    Article  CAS  Google Scholar 

  29. Klammt, C., Schwarz, D., Eifler, N., Engel, A., Piehler, J., Haase, W., et al. (2007). Cell-free production of G protein-coupled receptors for functional and structural studies. Journal of Structural Biology, 158, 482–493.

    Article  CAS  Google Scholar 

  30. Kaiser, L., Graveland-Bikker, J., Steuerwald, D., Vanberghem, M., Herlihy, K., & Zhang, S. (2008). Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses. Proceedings of the National Academy of Sciences of the United States of America, 105, 15726–15731.

    Article  CAS  Google Scholar 

  31. Misono, K. S., Sivasubramanian, N., Berkner, K., & Zhang, X. (1999). Expression and purification of the extracellular ligand-binding domain of the atrial natriuretic peptide (ANP) receptor: monovalent binding with ANP induces 2:2 complexes. Biochemistry, 38, 516–523.

    Article  CAS  Google Scholar 

  32. Janssen, M. J., Stegeman, M., Ensing, K., & de Zeeuw, R. A. (1996). Solubilized benzodiazepine receptors for use in receptor assays. Journal of Pharmaceutical and Biomedical Analysis, 14, 989–996.

    Article  CAS  Google Scholar 

  33. Klammt, C., Löhr, F., Schäfer, B., Haase, W., Dötsch, V., Rüterjans, H., et al. (2004). High level cell-free expression and specific labeling of integral membrane proteins. European Journal of Biochemistry, 271, 568–580.

    Article  CAS  Google Scholar 

  34. Du, D., Kato, T., Suzuki, F., & Park, E. Y. (2009). Binding affinity of full-length and extracellular domains of recombinant human (pro)renin receptor to human renin when expressed in the fat body and hemolymph of silkworm larvae. Journal of Bioscience and Bioengineering, 108, 304–309.

    Article  CAS  Google Scholar 

  35. Chiang, W. C., & Knowles, A. F. (2008). Transmembrane domain interactions affect the stability of the extracellular domain of the human NTPDase 2. Archives of Biochemistry and Biophysics, 472, 89–99.

    Article  CAS  Google Scholar 

  36. Ottemann, K. M., Xiao, W., Shin, Y. K., & Koshland, D. E., Jr. (1999). A piston model for transmembrane signaling of the aspartate receptor. Science, 285, 1751–1754.

    Article  CAS  Google Scholar 

  37. Chervitz, S. A., & Falke, J. J. (1996). Molecular mechanism of transmembrane signaling by the aspartate receptor: a model. Proceedings of the National Academy of Sciences of the United States of America, 93, 2545–2550.

    Article  CAS  Google Scholar 

  38. Scott, W. G., & Stoddard, B. L. (1994). Transmembrane signalling and the aspartate receptor. Structure, 2, 877–887.

    Article  CAS  Google Scholar 

  39. Schwarz, D., Junge, F., Durst, F., Frölich, N., Schneider, B., Reckel, S., et al. (2007). Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nature Protocols, 2, 2945–2957.

    Article  CAS  Google Scholar 

  40. Bryson, K., McGuffin, L. J., Marsden, R. L., Ward, J. J., Sodhi, J. S., & Jones, D. T. (2005). Protein structure prediction servers at University College London. Nucleic Acids Research, 33, W36–W38.

    Article  CAS  Google Scholar 

  41. Jones, D. T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 292, 195–202.

    Article  CAS  Google Scholar 

  42. Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Analytical Chemistry, 68, 850–858.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the DFG in the frame of Sfb 449 (Structure and function of membrane intrinsic receptors).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Schmülling or Alexander Heyl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wulfetange, K., Saenger, W., Schmülling, T. et al. E. coli-Based Cell-Free Expression, Purification and Characterization of the Membrane-Bound Ligand-Binding CHASE-TM Domain of the Cytokinin Receptor CRE1/AHK4 of Arabidopsis thaliana. Mol Biotechnol 47, 211–219 (2011). https://doi.org/10.1007/s12033-010-9331-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9331-0

Keywords

Navigation