Skip to main content
Log in

Identification of MicroRNA Target Genes in Vivo

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are short non-coding RNAs transcribed from intergenic or intronic sequences as long precursors that are sequentially processed by the endonucleases Drosha and Dicer into short double-stranded sequences. It is clear that miRNAs play essential roles in gene expression, development, and cell fate specification in animals. However, one of the barriers of miRNA research is how to find the target genes. In this study, we have developed a rapid and effective method to isolate miRNA target genes in vivo. MicroRNA was synthesized in vitro and labeled by biotin. After transfected into cells, the miRNA/mRNA complexes were isolated by streptavidin-coated magnetic beads. hsa-miR155 was taken as model to validate this method, which is a very important modulator in tumor development. It is useful for validation of targets predicted in silico, and, potentially, for discovery of previously uncharacterized targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Garzon, R., Calin, G. A., & Croce, C. M. (2009). MicroRNAs in cancer. Annual Review of Medicine, 60, 167–179.

    Article  CAS  Google Scholar 

  2. Cai, X., Hagedorn, C. H., & Cullen, B. R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10, 1957–1966.

    Article  CAS  Google Scholar 

  3. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature, 432, 231–235.

    Article  CAS  Google Scholar 

  4. Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., et al. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature, 432, 235–240.

    Article  CAS  Google Scholar 

  5. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415–419.

    Article  CAS  Google Scholar 

  6. Han, J., Lee, Y., Yeom, K. H., Nam, J. W., Heo, I., Rhee, J. K., et al. (2006). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 125, 887–901.

    Article  CAS  Google Scholar 

  7. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., & Kutay, U. (2004). Nuclear export of microRNA precursors. Science, 303, 95–98.

    Article  CAS  Google Scholar 

  8. Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., & Zamore, P. D. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293, 834–838.

    Article  CAS  Google Scholar 

  9. Salzman, D. W., Shubert-Coleman, J., & Furneaux, H. (2007). P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is required for let-7-directed silencing of gene expression. Journal of Biological Chemistry, 282, 32773–32779.

    Article  CAS  Google Scholar 

  10. Khvorova, A., Reynolds, A., & Jayasena, S. D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell, 115, 209–216.

    Article  CAS  Google Scholar 

  11. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., & Zamore, P. D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115, 199–208.

    Article  CAS  Google Scholar 

  12. Sen, G. L., & Blau, H. M. (2005). Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nature Cell Biology, 7, 633–636.

    Article  CAS  Google Scholar 

  13. Orom, U. A., Nielsen, F. C., & Lund, A. H. (2008). MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Molecular Cell, 30, 460–471.

    Article  Google Scholar 

  14. Khraiwesh, B., Arif, M. A., Seumel, G. I., Ossowski, S., Weigel, D., Reski, R., et al. (2010). Transcriptional control of gene expression by microRNAs. Cell, 140, 111–122.

    Article  CAS  Google Scholar 

  15. Stadler, B. M., & Ruohola-Baker, H. (2008). Small RNAs: Keeping stem cells in line. Cell, 132, 563–566.

    Article  CAS  Google Scholar 

  16. Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., & Marks, D. S. (2003). MicroRNA targets in Drosophila. Genome Biology, 5, R1.

    Article  Google Scholar 

  17. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., & Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell, 115, 787–798.

    Article  CAS  Google Scholar 

  18. Rehmsmeier, M., Steffen, P., Hochsmann, M., & Giegerich, R. (2004). Fast and effective prediction of microRNA/target duplexes. RNA, 10, 1507–1517.

    Article  CAS  Google Scholar 

  19. Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., et al. (2005). Combinatorial microRNA target predictions. Nature Genetics, 37, 495–500.

    Article  CAS  Google Scholar 

  20. Burgler, C., & Macdonald, P. M. (2005). Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method. BMC Genomics, 6, 88.

    Article  Google Scholar 

  21. Ambros, V., Bartel, B., Bartel, D. P., Burge, C. B., Carrington, J. C., Chen, X., et al. (2003). A uniform system for microRNA annotation. RNA, 9, 277–279.

    Article  CAS  Google Scholar 

  22. Karginov, F. V., Conaco, C., Xuan, Z., Schmidt, B. H., Parker, J. S., Mandel, G., et al. (2007). A biochemical approach to identifying microRNA targets. Proceedings of the National Academy of Sciences of the United States of America, 104, 19291–19296.

    Article  CAS  Google Scholar 

  23. Tan, L. P., Seinen, E., Duns, G., de Jong, D., Sibon, O. C., Poppema, S., et al. (2009). A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Research, 37, e137.

    Article  Google Scholar 

  24. Orom, U. A., & Lund, A. H. (2007). Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods, 43, 162–165.

    Article  CAS  Google Scholar 

  25. Hsu, R. J., Yang, H. J., & Tsai, H. J. (2009). Labeled microRNA pull-down assay system: An experimental approach for high-throughput identification of microRNA-target mRNAs. Nucleic Acids Research, 37, e77.

    Article  Google Scholar 

  26. Nonne, N., Ameyar-Zazoua, M., Souidi, M., & Harel-Bellan, A. (2010). Tandem affinity purification of miRNA target mRNAs (TAP-Tar). Nucleic Acids Research, 38, e20.

    Article  Google Scholar 

  27. Faraoni, I., Antonetti, F. R., Cardone, J., & Bonmassar, E. (2009). miR-155 gene: A typical multifunctional microRNA. Biochimica et Biophysica Acta, 1792, 497–505.

    CAS  Google Scholar 

  28. Ma, J. B., Ye, K., & Patel, D. J. (2004). Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature, 429, 318–322.

    Article  CAS  Google Scholar 

  29. Parker, J. S., Roe, S. M., & Barford, D. (2005). Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature, 434, 663–666.

    Article  CAS  Google Scholar 

  30. Wang, Y., Juranek, S., Li, H., Sheng, G., Tuschl, T., & Patel, D. J. (2008). Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature, 456, 921–926.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Wei Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, W., Zou, HW., Tan, YG. et al. Identification of MicroRNA Target Genes in Vivo. Mol Biotechnol 47, 200–204 (2011). https://doi.org/10.1007/s12033-010-9329-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9329-7

Keywords

Navigation