Skip to main content

Advertisement

Log in

Hypoxia-Specific Downregulation of Endogenous Human VEGF-A Gene by Hypoxia-Driven Expression of Artificial Transcription Factor

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Repression of vascular endothelial growth factor A (VEGF-A) is an attractive approach to cancer therapy. Although zinc-finger-based artificial transcription factors (ATFs) were constructed for human VEGF-A and constitutive expressions of ATFs were previously shown to downregulate the endogenous VEGF-A gene expression, repression of VEGF-A specifically in hypoxic tumors is desirable for therapeutic application of ATF technology. Here, we describe hypoxia-driven expression of the ATF for hypoxia-specific repression of human VEGF-A gene. We constructed a hypoxia-driven promoter for the ATF expression and placed it upstream of the ATF-encoding region. The resulting hypoxia-driven expression plasmids induced the expression of ATFs specifically in hypoxia, and the hypoxia-specific expression of ATFs effectively downregulated the VEGF-A expression in hypoxia, but not in normoxia. Thus, the engineered expression system of ATFs may enable repression of VEGF-A expression specifically in hypoxic tumors without affecting normal, healthy tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ferrara, N. (1999). Molecular and biological properties of vascular endothelial growth factor. Journal of Molecular Medicine, 77, 527–543.

    Article  CAS  Google Scholar 

  2. Kim, K. J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H. S., et al. (1993). Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature, 362, 841–844.

    Article  CAS  Google Scholar 

  3. Ellis, L. M., & Hicklin, D. J. (2008). VEGF-targeted therapy: Mechanisms of anti-tumor activity. Nature Reviews Cancer, 8, 579–591.

    Article  CAS  Google Scholar 

  4. Ferrara, N., Chen, H., Davis-Smyth, T., Gerber, H.-P., Nguyen, T.-N., Peers, D., et al. (1998). Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nature Medicine, 4, 336–340.

    Article  CAS  Google Scholar 

  5. Holash, J., Davis, S., Papadopoulos, N., Croll, S. D., Ho, L., Russell, M., et al. (2002). VEGF-Trap: A VEGF blocker with potent antitumor effects. Proceedings of the National Academy of Sciences of the United States of America, 99, 11393–11398.

    Article  CAS  Google Scholar 

  6. Fong, T. A. T., Shawver, L. K., Sun, L., Tang, C., App, H., Powell, T. J., et al. (1999). SU5416 is a potent and selective inhibitors of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Research, 59, 99–106.

    CAS  Google Scholar 

  7. Moreira, I. S., Fernandes, P. A., & Ramos, M. J. (2007). Vascular endothelial growth factor (VEGF) inhibition—a critical review. Anti-Cancer Agents in Medicinal Chemistry, 7, 223–245.

    Article  CAS  Google Scholar 

  8. Jellinek, D., Green, L. S., Bell, C., & Janjić, N. (1994). Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor. Biochemistry, 33, 10450–10456.

    Article  CAS  Google Scholar 

  9. Ng, E. W. M., Shima, D. T., Calias, P., Cunningham, E. T., Jr., Guyer, D. R., & Adamis, A. P. (2006). Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nature Reviews Drug Discovery, 5, 123–132.

    Article  CAS  Google Scholar 

  10. Liu, P.-P., Rebar, E. J., Zhang, L., Liu, Q., Jamieson, A. C., Liang, Y., et al. (2001). Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Journal of Biological Chemistry, 276, 11323–11334.

    Article  CAS  Google Scholar 

  11. Rebar, E. J., Huang, Y., Hickey, R., Nath, A. K., Meoli, D., Nath, S., et al. (2002). Induction of angiogenesis in a mouse model using engineered transcription factors. Nature Medicine, 8, 1427–1432.

    Article  CAS  Google Scholar 

  12. Snowden, A. W., Zhang, L., Urnov, F., Dent, C., Jouvenot, Y., Zhong, X., et al. (2003). Repression of vascular endothelial growth factor A in glioblastoma cells using engineered zinc finger transcription factors. Cancer Research, 63, 8968–8976.

    CAS  Google Scholar 

  13. Tachikawa, K., Schröder, O., Frey, G., Briggs, S. P., & Sera, T. (2004). Regulation of the endogenous VEGF-A gene by exogenous designed regulatory proteins. Proceedings of the National Academy of Sciences of the United States of America, 101, 15225–15230.

    Article  CAS  Google Scholar 

  14. Kwon, H.-S., Shin, H.-C., & Kim, J.-S. (2005). Suppression of vascular endothelial growth factor expression at the transcriptional and post-transcriptional levels. Nucleic Acids Research, 33, e74.

    Article  Google Scholar 

  15. Sera, T. (2009). Zinc-finger-based artificial transcription factors and their applications. Advanced Drug Delivery Reviews, 61, 513–526.

    Article  CAS  Google Scholar 

  16. Kang, Y.-A., Shin, H.-C., Yoo, J. Y., Kim, J.-H., Kim, J.-S., & Yun, C.-O. (2008). Novel cancer antiangiotherapy using the VEGF promoter-targeted artificial zinc-finger protein and oncolytic adenovirus. Molecular Therapy, 16, 1033–1040.

    Article  CAS  Google Scholar 

  17. Mori, T., Sasaki, J., Kanamori, T., Aoyama, Y., & Sera, T. (2009). Hypoxia-specific upregulation of the endogenous human VEGF-A gene by hypoxia-driven expression of artificial transcription factor. Biochemical and Biophysical Research Communications, 390, 845–848.

    Article  CAS  Google Scholar 

  18. Liu, Y., Cox, S. R., Morita, T., & Kourembanas, S. (1995). Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circulation Research, 77, 638–643.

    CAS  Google Scholar 

  19. Shibata, T., Giaccia, A. J., & Brown, J. M. (2000). Development of a hypoxia-responsive vector for tumor-specific gene therapy. Gene Therapy, 7, 493–498.

    Article  CAS  Google Scholar 

  20. Sera, T., & Uranga, C. (2002). Rational design of artificial zinc-finger proteins using a nondegenerate recognition code table. Biochemistry, 41, 7074–7081.

    Article  CAS  Google Scholar 

  21. Margolin, J. F., Friedman, J. R., Meyer, W. K.-H., Vissing, H., Thiesen, H.-J., & Rauscher, F. J., I. I. I. (1994). Krüppel-associated boxes are potent transcriptional repression domains. Proceedings of the National Academy of Sciences of the United States of America, 91, 4509–4513.

    Article  CAS  Google Scholar 

  22. Tischer, E., Mitchard, R., Hartman, T., Silva, M., Gospodarowicz, D., Fiddes, J. C., et al. (1991). The human gene for vascular endothelial growth factor. Journal of Biological Chemistry, 266, 11947–11954.

    CAS  Google Scholar 

  23. Akeson, A. L., Greenberg, J. M., Cameron, J. E., Thompson, F. Y., Brooks, S. K., Wiginton, D., et al. (2003). Temporal and spatial regulation of VEGF-A controls vascular patterning in the embryonic lung. Developmental Biology, 264, 443–455.

    Article  CAS  Google Scholar 

  24. Mino, T., Hatono, T., Matsumoto, N., Mori, T., Mineta, Y., Aoyama, Y., et al. (2006). Inhibition of DNA replication of human papillomavirus by artificial zinc finger proteins. Journal of Virology, 80, 5405–5412.

    Article  CAS  Google Scholar 

  25. Su, H., Arakawa-Hoyt, J., & Kan, Y. W. (2002). Adeno-associated viral vector-mediated hypoxia response element-regulated gene expression in mouse ischemic heart model. Proceedings of the National Academy of Sciences of the United States of America, 99, 9480–9485.

    Article  CAS  Google Scholar 

  26. Shima, D. T., Kuroki, M., Deutsch, U., Ng, Y.-S., Adamis, A. P., & D’Amore, A. D. (1996). The mouse gene for vascular endothelial growth factor. Journal of Biological Chemistry, 271, 3877–3883.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Haruyuki Atomi for the use of their DNA sequencer. This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan to T.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, T., Sasaki, J., Aoyama, Y. et al. Hypoxia-Specific Downregulation of Endogenous Human VEGF-A Gene by Hypoxia-Driven Expression of Artificial Transcription Factor. Mol Biotechnol 46, 134–139 (2010). https://doi.org/10.1007/s12033-010-9288-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9288-z

Keywords

Navigation