Skip to main content

Advertisement

Log in

Expression, Purification, Bioactivity, and Partial Characterization of a Recombinant Human Bone Morphogenetic Protein-7 Produced in Human 293T Cells

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Bone morphogenetic protein-7 (BMP-7) is a secreted multifunctional growth factor of the TGF-β superfamily, which is predominantly known for its osteoinductive properties and emerging potential for treatment of kidney diseases. The mature 34–38 kDa disulfide-linked homodimer protein plays a key role in the differentiation of mesenchymal cells into bone and cartilage. In this study, the full-length sequence of hBMP-7 was amplified and, then, cloned, expressed, and purified from the conditioned medium of 293T cells stably transfected with a lentiviral vector. The mature protein dimer form was properly secreted and recognized by anti-BMP-7 antibodies, and the protein was shown to be glycosilated by treatment with exoglycosidase, followed by western blotting. Moreover, the activity of the purified protein was demonstrated both in vitro, by alkaline phosphatase activity in C2C12 cells, and in vivo by induction of ectopic bone formation in Balb/c Nude mice after 21 days, respectively. This recombinant protein platform may be very useful for expression of different human cytokines and other proteins for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kingsley, D. M. (1994). The TGF-beta superfamily: New members, new receptors, and new genetic tests of function in different organisms. Genes and Development, 8, 133–146.

    Article  CAS  Google Scholar 

  2. Kirker-Head, C. A. (2000). Potential applications and delivery strategies for bone morphogenetic proteins. Advanced Drug Delivery Reviews, 43, 65–92.

    Article  CAS  Google Scholar 

  3. Urist, M. R. (1965). Bone: Formation by autoinduction. Science, 150, 893–899.

    Article  CAS  Google Scholar 

  4. Wang, E. A., Rosen, V., Cordes, P., Hewick, R. M., Kriz, M. J., Luxenberg, D. P., et al. (1988). Purification and characterization of other distinct bone-inducing factors. Proceedings of the National Academy of Sciences of the United States of America, 85, 9484–9488.

    Article  CAS  Google Scholar 

  5. Granjeiro, J. M., Oliveira, R. C., Bustos-Valenzuela, J. C., Sogayar, M. C., & Taga, R. (2005). Bone morphogenetic proteins: From structure to clinical use. Brazilian Journal of Medical and Biological Research, 38, 1463–1473.

    Article  CAS  Google Scholar 

  6. Groeneveld, E. H., & Burger, E. H. (2000). Bone morphogenetic proteins in human bone regeneration. European Journal of Endocrinology, 142, 9–21.

    Article  CAS  Google Scholar 

  7. Helm, G. A., Alden, T. D., Sheehan, J. P., & Kallmes, D. (2000). Bone morphogenetic proteins and bone morphogenetic protein gene therapy in neurological surgery: A review. Neurosurgery, 46, 1213–1222.

    Article  CAS  Google Scholar 

  8. Cook, S. D., & Rueger, D. C. (1996). Osteogenic protein-1: Biology and applications. Clinical Orthopaedics and Related Research, 324, 29–38.

    Article  Google Scholar 

  9. Scheufler, C., Sebald, W., & Hulsmeyer, M. (1999). Crystal structure of human bone morphogenetic protein-2 at 2.7 A resolution. Journal of Molecular Biology, 287, 103–115.

    Article  CAS  Google Scholar 

  10. Sampath, T. K., et al. (1992). Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. The Journal of Biological Chemistry, 267, 20352–20362.

    CAS  Google Scholar 

  11. Lee, D. H., Suh, H., Han, D. W., Park, B. J., Lee, J. W., & Park, J. C. (2003). The effects of recombinant human BMP-7, prepared from a COS-7 expression system, on the proliferation and differentiation of rat newborn calvarial osteoblasts. Yonsei Medical Journal, 44, 593–601.

    CAS  Google Scholar 

  12. Ruppert, R., Hoffmann, E., & Sebald, W. (1996). Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. European Journal of Biochemistry, 237, 295–302.

    Article  CAS  Google Scholar 

  13. Long, S., Truong, L., Bennett, K., Phillips, A., Wong-Staal, F., & Ma, H. (2006). Expression, purification, and renaturation of bone morphogenetic protein-2 from Escherichia coli. Protein Expression and Purification, 46, 374–378.

    Article  CAS  Google Scholar 

  14. Bessa, P. C., Cerqueira, M. T., Rada, T., Gomes, M. E., Neves, N. M., Nobre, A., et al. (2009). Expression, purification and osteogenic bioactivity of recombinant human BMP-4, -9, -10, -11 and -14. Protein Expression and Purification, 63, 89–94.

    Article  CAS  Google Scholar 

  15. Klosch, B., Furst, W., Kneidinger, R., Schuller, M., Rupp, B., Banerjee, A., et al. (2005). Expression and purification of biologically active rat bone morphogenetic protein-4 produced as inclusion bodies in recombinant Escherichia coli. Biotechnological Letters, 27, 1559–1564.

    Article  Google Scholar 

  16. Tiscornia, G., Singer, O., & Verma, I. M. (2006). Production and purification of lentiviral vectors. Nature Protocols, 1, 241–245.

    Article  CAS  Google Scholar 

  17. Rider, C. C. (2006). Heparin/heparan sulphate binding in the TGF-beta cytokine superfamily. Biochemical Society Transactions, 34, 458–460.

    Article  CAS  Google Scholar 

  18. Schagger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166, 368–379.

    Article  CAS  Google Scholar 

  19. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  20. Sampath, T. K., & Reddi, A. H. (1983). Homology of bone-inductive proteins from human, monkey, bovine, and rat extracellular matrix. Proceedings of the National Academy of Sciences of the United States of America, 80, 6591–6595.

    Article  CAS  Google Scholar 

  21. Jones, W. K., et al. (1994). Osteogenic protein-1 (OP-1) expression and processing in Chinese hamster ovary cells: Isolation of a soluble complex containing the mature and pro-domains of OP-1. Growth Factors, 11, 215–225.

    Article  CAS  Google Scholar 

  22. Mundy, G. R. (1996). Regulation of bone formation by bone morphogenetic proteins and other growth factors. Clinical Orthopaedics and Related Research, 324, 24–28.

    Article  Google Scholar 

  23. Li, T., Surendran, K., Zawaideh, M. A., Mathew, S., & Hruska, K. A. (2004). Bone morphogenetic protein 7: A novel treatment for chronic renal and bone disease. Current Opinion in Nephrology and Hypertension, 13, 417–422.

    Article  CAS  Google Scholar 

  24. Dahabreh, Z., Dimitriou, R., & Giannoudis, P. V. (2007). Health economics: A cost analysis of treatment of persistent fracture non-unions using bone morphogenetic protein-7. Injury, 38, 371–377.

    Article  Google Scholar 

  25. Zhao, Q., Chen, P., Manson, M. E., & Liu, Y. (2006). Production of active recombinant mitogen-activated protein kinases through transient transfection of 293T cells. Protein Expression and Purification, 46, 468–474.

    Article  CAS  Google Scholar 

  26. Stocker, M., Tur, M. K., Sasse, S., Krussmann, A., Barth, S., & Engert, A. (2003). Secretion of functional anti-CD30-angiogenin immunotoxins into the supernatant of transfected 293T-cells. Protein Expression and Purification, 28, 211–219.

    Article  CAS  Google Scholar 

  27. Swencki-Underwood, B., et al. (2008). Expression and characterization of a human BMP-7 variant with improved biochemical properties. Protein Expression and Purification, 57, 312–319.

    Article  CAS  Google Scholar 

  28. Katagiri, T., et al. (1994). Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. Journal of Cell Biology, 127, 1755–1766.

    Article  CAS  Google Scholar 

  29. Cheng, H., et al. (2003). Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). Journal of Bone and Joint Surgery. American Volume, 85-A, 1544–1552.

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support of the Federal Brazilian agencies (FINEP, CNPq, and CAPES) and the São Paulo State Research Foundation (FAPESP) and of the SIN-Implant System Company. We would also like to thank Dr. Inder Verma (The Salk Institute, La Jolla, USA) for kindly supplying the pCMV-IRES-EGFP plasmid, and the excellent technical assistance of Zizi de Mendonça, Débora Cristina da Costa Lopes, Sandra Regina Souza, and Ricardo Krett de Oliveira.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Sogayar.

Additional information

J. C. Bustos-Valenzuela and E. Halcsik equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bustos-Valenzuela, J.C., Halcsik, E., Bassi, Ê.J. et al. Expression, Purification, Bioactivity, and Partial Characterization of a Recombinant Human Bone Morphogenetic Protein-7 Produced in Human 293T Cells. Mol Biotechnol 46, 118–126 (2010). https://doi.org/10.1007/s12033-010-9287-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9287-0

Keywords

Navigation