Skip to main content
Log in

Novel Expression System for Combined Vaccine Production in Edwardsiella tarda Ghost and Cadaver Cells

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

To develop combined vaccine systems, we have generated Edwardsiella tarda ghosts (ETG) displaying a foreign protein on the outer membrane and also Ed. tarda cadaver (ETC) expressing a heterologous protein in the cytoplasm. Green fluorescent protein (GFP) was used as a model foreign protein. A constitutive promoter (EtPR C28-1) cloned newly from Ed. tarda was used as a promoter for the expression of foreign protein. Comparison of the strength of the new promoter with a commercially available constitutive promoter (PHCE) showed higher expression levels of the novel expression system. The N-terminal domain of ice nucleation protein (InaN), an outer membrane protein of Pseudomonas syringae, was used as an anchor motif for surface display of GFP. By transformation of Ed. tarda with the constructed vectors, GFP was successfully expressed on the surface of ETG and in the cytoplasm of ETC. When compared to PHCE driven expression, approximately more than 2 times of GFP was expressed on ETG and in ETC by EtPR C28-1 promoter when judged by fluorescent spectrophotometry. Furthermore, significantly higher expression of GFP on the surface of ETG by EtPR C28-1 than by PHCE was demonstrated by serum agglutination assay. These results suggest that the newly cloned Ed. tarda constitutive promoter is capable to express foreign proteins not only on the surface of Ed. tarda ghosts but also in the cytoplasm of Ed. tarda cadavers, and can be used as an efficient promoter for the expression of heterologous antigens of the ETG and ETC-based combined vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin, J. H.-Y., Chen, T.-Y., Chen, M.-S., Chen, H.-E., Chou, R.-L., Chen, T.-I., et al. (2006). Vaccination with three inactivated pathogens of cobia (Rachycentron canadum) stimulates protective immunity. Aquaculture, 255, 125–132.

    Article  CAS  Google Scholar 

  2. Swain, P., Behura, A., Dash, S., & Nayak, S. K. (2007). Serum antibody response of Indian major carp, Labeo rohita to three species of pathogenic bacteria; Aeromonas hydrophila, Edwardsiella tarda and Pseudomonas fluorescens. Veterinary Immunology and Immunopathology, 117, 137–141.

    Article  CAS  Google Scholar 

  3. Nikoskelainen, S., Verho, S., Järvinen, S., Madetoja, J., Wiklund, T., & Lilius, E.-M. (2007). Multiple whole bacterial antigens in polyvalent vaccine may result in inhibition of specific responses in rainbow trout (Oncorhynchus mykiss). Fish and Shellfish Immunology, 22, 206–217.

    Article  CAS  Google Scholar 

  4. Busch, R. A. (1997). Polyvalent vaccines in fish: The interactive effects of multiple antigens. Developments in Biological Standardization, 90, 245–256.

    CAS  Google Scholar 

  5. Klemm, P., & Schembri, M. A. (2000). Fimbrial surface display systems in bacteria: From vaccines to random libraries. Microbiology, 146, 3025–3032.

    CAS  Google Scholar 

  6. Maggi, T., Spinosa, M., Ricci, S., Medaglini, D., Pozzi, G., & Oggioni, M. R. (2002). Genetic engineering of Streptococcus gordonii for the simultaneous display of two heterologous proteins at the bacterial surface. FEMS Microbiology Letters, 210, 135–141.

    Article  CAS  Google Scholar 

  7. Garmory, H. S., Leary, S. E. C., Griffin, K. F., Williamson, E. D., Brown, K. A., & Titball, R. W. (2003). The use of live attenuated bacteria as a delivery system for heterologous antigens. Journal of Drug Targeting, 11, 471–479.

    Article  CAS  Google Scholar 

  8. Thune, R. L., Stanley, L. A., & Cooper, R. K. (1993). Pathogenesis of gram negative bacterial infections in warm water fish. Annual Review of Fish Diseases, 3, 37–68.

    Article  Google Scholar 

  9. Plumb, J. A. (1999). Edwardsiella septicaemias. In P. T. K. Woo & E. W. Bruno (Eds.), Fish diseases and disorders, Vol. 3: Viral, bacterial and fungal infections (pp. 479–521). Wallingford: CABI.

    Google Scholar 

  10. Kwon, S. R., Nam, Y. K., Kim, S. K., Kim, D. S., & Kim, K. H. (2005). Generation of Edwardsiella tarda ghosts by bacteriophage PhiX174 lysis gene E. Aquaculture, 250, 16–21.

    Article  CAS  Google Scholar 

  11. Kwon, S. R., Nam, Y. K., Kim, S. K., & Kim, K. H. (2006). Protection of tilapia (Oreochromis mosambicus) from edwardsiellosis by vaccination with Edwardsiella tarda ghosts. Fish and Shellfish Immunology, 20, 621–626.

    Article  CAS  Google Scholar 

  12. Kwon, S. R., Lee, E. H., Nam, Y. K., Kim, S. K., & Kim, K. H. (2007). Efficacy of oral immunization with Edwardsiella tarda ghosts against edwardsiellosis in olive flounder (Paralichthys olivaceus). Aquaculture, 269, 84–88.

    Article  CAS  Google Scholar 

  13. Lee, D. J., Kwon, S. R., Zenke, K., Lee, E. H., Nam, Y. K., Kim, S. K., et al. (2008). Generation of safety enhanced Edwardsiella tarda ghost vaccine. Diseases of Aquatic Organisms, 81, 249–254.

    Article  CAS  Google Scholar 

  14. Kwon, S. R., Kang, Y. J., Lee, D. J., Lee, E. H., Nam, Y. K., Kim, S. K., et al. (2009). Generation of Vibrio anguillarum ghost by coexpression of PhiX 174 lysis E gene and staphylococcal nuclease A gene. Molecular Biotechnology, 42, 154–159.

    Article  CAS  Google Scholar 

  15. Poo, H., Song, J. J., Hong, S. P., Choi, Y. H., Yun, S. W., Kim, J. H., et al. (2002). Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor-α. Biotechnological Letters, 24, 1185–1189.

    Article  CAS  Google Scholar 

  16. Lin, L., Kang, D. G., & Cha, H. J. (2004). Functional display of foreign protein on surface of Escherichia coli using N-terminal domain of ice nucleation protein. Biotechnology and Bioengineering, 85, 214–221.

    Article  Google Scholar 

  17. Szostak, M. P., Hensel, A., Eko, F. O., Klein, T., Mader, H., Haselberger, A., et al. (1996). Bacterial ghosts: Non-living candidate vaccines. Journal of Biotechnology, 44, 161–170.

    Article  CAS  Google Scholar 

  18. Jalava, K., Eko, F. O., Riedmann, E., & Lubitz, W. (2003). Bacterial ghosts as carrier and targeting systems for mucosal antigen delivery. Expert Review of Vaccines, 2, 45–51.

    Article  CAS  Google Scholar 

  19. Georgiou, G., Stathopoulos, C., Daugherty, P. S., Nayak, A. R., Iverson, B. L., & Curtiss, R. (1997). Display of heterologous proteins on the surface of microorganismss From the screening of combinatorial libraries to live recombinant vaccines. Nature Biotechnology, 15, 29–34.

    Article  CAS  Google Scholar 

  20. Earhart, C. F. (2000). Use of an Lpp-OmpA fusion vehicle for bacterial surface display. Methods in Enzymology, 326, 506–516.

    Article  CAS  Google Scholar 

  21. Samuelson, P., Gunneriusson, E., Nygren, P. A., & Stahl, S. (2002). Display of proteins on bacteria. Journal of Biotechnology, 96, 129–154.

    Article  CAS  Google Scholar 

  22. Rutherford, N., & Mourez, M. (2006). Surface display of proteins by Gram-negative bacterial autotransporters. Microbial Cell Factories, 5, 22.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2006-311-F00090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Hong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S.H., Nam, Y.K. & Kim, K.H. Novel Expression System for Combined Vaccine Production in Edwardsiella tarda Ghost and Cadaver Cells. Mol Biotechnol 46, 127–133 (2010). https://doi.org/10.1007/s12033-010-9277-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9277-2

Keywords

Navigation