Skip to main content
Log in

Characterisation of a DNA Polymerase Highly Mutated Along the Template Binding Interface

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Phage display establishes a link between a polypeptide and its corresponding gene. It has been much used for the isolation of proteins binding to chosen molecular targets. A second link was designed more recently between a phage-displayed enzyme and its reaction product. Affinity chromatography for the product then allows the isolation of catalytically active enzymes and of their genes. Using this strategy, a polymerase with 15 mutations was selected by directed evolution of Thermus aquaticus DNA polymerase I. The kinetic characterisation reported here highlights the variant’s broad template specificity and classifies this enzyme as a thermostable DNA-dependent and RNA-dependent DNA-polymerase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Smith, G. P. (1985). Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science, 228, 1315–1317.

    Article  CAS  Google Scholar 

  2. Marks, J. D., Hoogenboom, H. R., Griffiths, A. D., & Winter, G. (1992). Molecular evolution of proteins on filamentous phage. Mimicking the strategy of the immune system. Journal of Biological Chemistry, 267, 16007–16010.

    CAS  Google Scholar 

  3. Jestin, J. L. (2008). Functional cloning by phage display. Biochimie, 90, 1273–1278.

    Article  CAS  Google Scholar 

  4. Kristensen, P., & Winter, G. (1998). Proteolytic selection for protein folding using filamentous bacteriophages. Folding & Design, 3, 321–328.

    Article  CAS  Google Scholar 

  5. Sieber, V., Pluckthun, A., & Schmid, F. X. (1998). Selecting proteins with improved stability by a phage-based method. Nature Biotechnology, 16, 955–960.

    Article  CAS  Google Scholar 

  6. Fastrez, J. (2002). Investigation of phage display for the directed evolution of enzymes. In S. Brakmann and K. Johnsson (Ed.), Directed molecular evolution of proteins (pp. 79–110). Weinheim: Wiley VCH.

  7. Jestin, J. L., & Kaminski, P. A. (2004). Directed enzyme evolution and selections for catalysis based on product formation. Journal of Biotechnology, 113, 85–103.

    Article  CAS  Google Scholar 

  8. Pedersen, H., Hölder, S., Sutherlin, D. P., Schwitter, U., King, D. S., & Schultz, P. G. (1998). A method for directed evolution and functional cloning of enzymes. Proceedings of the National Academy of Sciences of the USA, 95, 10523–10528.

    Article  CAS  Google Scholar 

  9. Jestin, J. L., Kristensen, P., & Winter, G. (1999). A method for the selection of catalytic activity using phage display and proximity coupling. Angewandte Chemie International Edition, 38, 1124–1127.

    Article  CAS  Google Scholar 

  10. Demartis, S., Huber, A., Viti, F., Lozzi, L., Giovannoni, L., Neri, P., et al. (1999). A strategy for the isolation of catalytic activities from repertoires of enzymes displayed on phage. Journal of Molecular Biology, 286, 617–633.

    Article  CAS  Google Scholar 

  11. Ponsard, I., Galleni, M., Soumillion, P., & Fastrez, J. (2001). Selection of metalloenzymes by catalytic activity using phage display and catalytic elution. ChemBioChem, 2, 253–259.

    Article  CAS  Google Scholar 

  12. Atwell, S., & Wells, J. A. (1999). Selection for improved subtiligases by phage display. Proceedings of the National Academy of Sciences of the USA, 96, 9497–9502.

    Article  CAS  Google Scholar 

  13. Heinis, C., Huber, A., Demartis, S., Bertschinger, J., Melkko, S., Lozzi, L., et al. (2001). Selection of catalytically active biotin ligase and trypsin mutants by phage display. Protein Engineering, 14, 1043–1052.

    Article  CAS  Google Scholar 

  14. Xia, G., Chen, L., Sera, T., Fa, M., Schultz, P. G., & Romesberg, F. E. (2002). Directed evolution of novel polymerase activities: mutation of a DNA polymerase into an efficient RNA polymerase. Proceedings of the National Academy of Sciences of the USA, 99, 6597–6602.

    Article  CAS  Google Scholar 

  15. Fa, M., Radeghieri, A., Henry, A. A., & Romesberg, F. E. (2004). Expanding the substrate repertoire of a DNA polymerase by directed evolution. Journal of the American Chemical Society, 126, 1748–1754.

    Article  CAS  Google Scholar 

  16. Jestin, J. L., and Vichier-Guerre, S. (2008). Methods for obtaining thermostable enzymes. Patent US2008014609.

  17. Vichier-Guerre, S., Ferris, S., Auberger, N., Mahiddine, K., & Jestin, J. L. (2006). A population of thermostable reverse transcriptases evolved from Thermus aquaticus DNA polymerase I by phage display. Angewandte Chemie International Edition, 45, 6133–6137.

    Article  CAS  Google Scholar 

  18. Orsi, E., & Jestin, J. L. (2003). Optimisation of in vitro enzyme selection. Comptes Rendus Chimie, 6, 501–506.

    Article  CAS  Google Scholar 

  19. Vichier-Guerre, S., & Jestin, J. L. (2003). Iterative cycles of in vitro protein selection for DNA polymerase activity. Biocatalysis & Biotransformations, 21, 75–78.

    CAS  Google Scholar 

  20. Jestin, J. L., & Vichier-Guerre, S. (2005). How to broaden enzyme substrate specificity: Strategies, implications and applications. Research in Microbiology, 156, 961–966.

    Article  CAS  Google Scholar 

  21. Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., Chiswell, D. J., Hudson, P., & Winter, G. (1991). Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody Fab heavy and light chains. Nucleic Acids Research, 19, 4133–4137.

    Article  CAS  Google Scholar 

  22. Jestin, J. L., Volioti, G., & Winter, G. (2001). Improving the display of proteins on filamentous phage. Research in Microbiology, 152, 187–191.

    Article  CAS  Google Scholar 

  23. Strobel, H., Ladant, D., & Jestin, J. L. (2003). Efficient display of two enzymes on filamentous phage using an improved signal sequence. Molecular Biotechnology, 24, 1–9.

    Article  CAS  Google Scholar 

  24. Bahrami, F., & Jestin, J. L. (2008). Streptococcus agalactiae DNA polymerase I is an efficient reverse transcriptase. Biochimie, 90, 1796–1799.

    Article  CAS  Google Scholar 

  25. Pace, N. C., Vajdos, F., Fee, L., Grimsley, G., & Grey, T. (1995). How to measure and predict the molar absorption coefficient of a protein. Protein Science, 4, 2411–2423.

    Article  CAS  Google Scholar 

  26. Doublié, S., Tabor, S., Long, A. M., Richardson, C. C., & Ellenberger, T. (1998). Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 angström resolution. Nature, 391, 251–258.

    Article  Google Scholar 

  27. Patel, P. H., & Loeb, L. A. (2000). DNA polymerase active site is highly mutable: Evolutionary consequences. Proceedings of the National Academy of Sciences of the USA, 97, 5095–5100.

    Article  CAS  Google Scholar 

  28. Delarue, M., Poch, O., Tordo, N., Moras, D., & Argos, P. (1990). An attempt to unify the structure of polymerases. Protein Engineering, 6, 461–467.

    Google Scholar 

  29. Ghadessy, F. J., Ong, J. L., & Holliger, P. (2001). Directed evolution of polymerase function by compartmentalised self-replication. Proceedings of the National Academy of Sciences of the USA, 98, 4552–4557.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministère de la Recherche and by the Pasteur-Weizmann Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Jestin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vichier-Guerre, S., Jestin, JL. Characterisation of a DNA Polymerase Highly Mutated Along the Template Binding Interface. Mol Biotechnol 46, 58–62 (2010). https://doi.org/10.1007/s12033-010-9275-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9275-4

Keywords

Navigation