Skip to main content
Log in

Functional Characterization of Trehalose Biosynthesis Genes from E. coli: An Osmolyte Involved in Stress Tolerance

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Trehalose (1-α-d-glucopyranosyl-1-α-d-glucopyranoside), a non-reducing disaccharide is a major compatible solute, which maintains fluidity of membranes and protects the biological structure of organisms under stress. In this study, trehalose-6-phosphate synthase (otsA) and trehalose-6-phosphate phosphatase (otsB) genes encoding for trehalose biosynthesis from Escherichia coli was cloned as an operon and expressed in E. coli M15(pREP4). The recombinant E. coli strain showed a threefold increase in the activity of otsBA pathway enzymes, compared to the control strain. The transgenic E. coli accumulated up to 0.86 mg/l of trehalose. The sequence of otsA and otsB genes reported in this study contains several base substitutions with that of reported sequences in GenBank, resulting in the altered amino acid sequences of the translated proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Madigan, M. T., & Oren, A. (1999). Thermophilic and halophilic extremophiles. Current Opinion in Microbiology, 2, 265–269.

    Article  CAS  Google Scholar 

  2. Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., & Somero, G. N. (1982). Living with water stress: evolution of osmolyte systems. Science, 217, 1214–1222.

    Article  CAS  Google Scholar 

  3. Richards, A. B., Krakowka, S., Dexter, L. B., Schmid, H., Wolterbeek, A. P. M., Waalkens Berendsen, D. H., et al. (2002). Trehalose: A review of properties, history of use and human tolerance, and results of multiple safety studies. Food and Chemical Toxicology, 40, 871–898.

    Article  CAS  Google Scholar 

  4. Elbein, A. D., Pan, Y. T., Pastuszak, I., & Carroll, D. (2003). New insights on trehalose: A multifunctional molecule. Glycobiology, 13, 17R–27R.

    Article  CAS  Google Scholar 

  5. Arguelles, J. C. (2000). Physiological roles of trehalose in bacteria and yeast: A comparative analysis. Archives of Microbiology, 174, 217–224.

    Article  CAS  Google Scholar 

  6. Strom, A. R., & Kaasen, I. (1993). Trehalose metabolism in Escherichia coli: Stress protection and stress regulation of gene expression. Molecular Microbiology, 8, 205–210.

    Article  CAS  Google Scholar 

  7. Horlacher, R., & Boss, W. (1997). Characterization of TreR, the major regulator of the Escherichia coli trehalose system. Journal of Biological Chemistry, 272, 13026–13032.

    Article  CAS  Google Scholar 

  8. Giaever, H. M., Styrvold, O. B., Kaasen, I., & Strom, A. R. (1988). Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. Journal of Bacteriology, 170, 2841–2849.

    CAS  Google Scholar 

  9. Kaasen, I., McDougall, J., & Strom, A. R. (1994). Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex. Gene, 145, 9–15.

    Article  CAS  Google Scholar 

  10. Reinders, A., Burckert, N., Hohmann, S., Thevelein, J. M., Boller, T., Wiemken, A., et al. (1997). Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Molecular Microbiology, 24, 687–695.

    Article  CAS  Google Scholar 

  11. Maruta, K., Hattori, K., Nakada, T., Kubota, M., Sugimoto, T., & Kurimoto, M. (1996). Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q36. Biochimica et Biophysica Acta, 1289, 10–13.

    Google Scholar 

  12. Schiraldi, C., Di Lernia, I., & De Rosa, M. (2002). Trehalose production: Exploiting novel approaches. Trends in Biotechnology, 20, 420–425.

    Article  CAS  Google Scholar 

  13. Kienle, I., Burgert, M., & Holtzer, H. (1993). Assay of trehalose with acid trehalase purified from Saccharomyces cerevisiae. Yeast, 9, 607–611.

    Article  CAS  Google Scholar 

  14. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  15. Goddijn, O. J. M., Verwoerd, T. C., Voogd, E., Krutwagen, R. W. H. H., De Graaf, P. T. H. M., Poelos, J., et al. (1997). Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiology, 113, 181–190.

    Article  CAS  Google Scholar 

  16. Bencini, D. A., Wild, J. R., & O’Donovan, G. A. (1983). Linear one-step assay for the determination of orthophosphate. Analytical Biochemistry, 132, 254–258.

    Article  CAS  Google Scholar 

  17. Padilla, L., Kramer, R., Stephanopoulos, G., & Agosin, E. (2004). Overproduction of trehalose: Heterologous expression of Escherichia coli trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in Corynebacterium glutamicum. Applied and Environmental Microbiology, 70, 370–376.

    Article  CAS  Google Scholar 

  18. Uy, D., Delaunay, S., Engasser, J., & Goergen, J. (1999). A method for the determination of pyruvate carboxylase activity during the glutamic acid fermentation with Corynebacterium glutamicum. Journal of Microbiological Methods, 39, 91–96.

    Article  CAS  Google Scholar 

  19. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.

    Article  CAS  Google Scholar 

  20. Kaasen, I., Falkenberg, P., Styrvold, O. B., & Strom, A. R. (1992). Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: Evidence that transcription is activated by katF (AppR). Journal of Bacteriology, 174, 889–898.

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Director, Central Institute of Fisheries Technology (CIFT), Cochin for providing the necessary facilities to carry out this research work and Indian Council for Agricultural Research, New Delhi, India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toms C. Joseph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, T.C., Rajan, L.A., Thampuran, N. et al. Functional Characterization of Trehalose Biosynthesis Genes from E. coli: An Osmolyte Involved in Stress Tolerance. Mol Biotechnol 46, 20–25 (2010). https://doi.org/10.1007/s12033-010-9259-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9259-4

Keywords

Navigation